1,086 research outputs found

    Farm-gate N and P balances and use efficiencies across specialist dairy farms in the Republic Ireland

    Get PDF
    working paperThis study establishes farm gate N and P balances and use efficiencies based on the average of 2 years of Teagasc National Farm Survey data in 2009 and 2010. The weighted average farm gate N surplus for this nationally representative sample of specialist dairy farms was 143.4 kg N ha-1. Average farm gate nitrogen use efficiency was 23.2%. For dairy farms operating under an EU Nitrates Derogation, the average N surplus was higher at 181.8 kg N ha-1 and averageN use efficiency was slightly lower at 22.2%. The total average farm gate P balance was 4.1 kg ha-1 in surplus, and P use efficiency averaged 83.9%. P balance ranged from -7.3 to 23.0 kg ha-1. A total of 27% had a negative P balance. The average P surplus for farms with a Nitrates Derogation was below the average of all farms at 3.5 kg P ha-1 and average P use efficiency for these Derogation farms was above the average of all farms at 90%

    Developing the EU Farm Accountancy Data Network to derive indicators around the sustainable use of nitrogen and phosphorus at farm level.

    Get PDF
    peer-reviewedThis study uses a national farm survey which is part of the European Union (EU) Farm Accountancy Data Network (FADN) to develop environmental sustainability indicators in the use of nitrogen (N) and phosphorus (P) across a range of farm systems in the Republic of Ireland. Farm level micro data were used to calculate all inputs and outputs of N and P that cross the farm gate and to derive balances (kg ha-1) and overall use efficiencies across 827 farms in 2012. The sample is populated weighted to represents 71,480 farms nationally. Results indicated an average N balance of 71.0 kg ha-1 and use efficiency of 36.7% across the nationally representative sample. Nitrogen balances were between two and four times higher across specialist dairy farms compared to livestock rearing and specialist tillage systems. Nitrogen use efficiency was generally lowest across milk producing systems compared to livestock rearing and tillage systems. Phosphorus balance and use efficiency averaged 4.7 kg ha-1 and 79.6% respectively across the sample. Specialist tillage and dairying farms had higher average P balances compared to other livestock based systems. The approach developed in this analysis will form the benchmark for temporal analysis across these indicators for future nutrient balance and efficiency trends and could assist other members of the EU FADN to develop similar nationally representative indicators.Department of Agriculture, Food and the Marin

    A toolbox for parameter-free predictions of solid-state properties of monodisperse glassy polymers with frozen-in molecular orientation

    Get PDF
    A toolbox that allows designers to predict the properties of oriented glassy polymers using only existing material constants is constructed from a constitutive model applicable to both polymer solids and polymer melts. Two solid-state properties of practical engineering interest are considered: optical birefringence, and craze initiation stress. Predictions from the toolbox are compared to new experimental measurements on well characterized grades of monodisperse polystyrene, and confirm that the toolbox can account for the effect of polymer molecular weight

    Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator

    Full text link
    The breaking of time-reversal symmetry by ferromagnetism is predicted to yield profound changes to the electronic surface states of a topological insulator. Here, we report on a concerted set of structural, magnetic, electrical and spectroscopic measurements of \MBS thin films wherein photoemission and x-ray magnetic circular dichroism studies have recently shown surface ferromagnetism in the temperature range 15 K ≤T≤100\leq T \leq 100 K, accompanied by a suppressed density of surface states at the Dirac point. Secondary ion mass spectroscopy and scanning tunneling microscopy reveal an inhomogeneous distribution of Mn atoms, with a tendency to segregate towards the sample surface. Magnetometry and anisotropic magnetoresistance measurements are insensitive to the high temperature ferromagnetism seen in surface studies, revealing instead a low temperature ferromagnetic phase at T≲5T \lesssim 5 K. The absence of both a magneto-optical Kerr effect and anomalous Hall effect suggests that this low temperature ferromagnetism is unlikely to be a homogeneous bulk phase but likely originates in nanoscale near-surface regions of the bulk where magnetic atoms segregate during sample growth. Although the samples are not ideal, with both bulk and surface contributions to electron transport, we measure a magnetoconductance whose behavior is qualitatively consistent with predictions that the opening of a gap in the Dirac spectrum drives quantum corrections to the conductance in topological insulators from the symplectic to the orthogonal class.Comment: To appear in Phys. Rev.

    Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity

    Full text link
    We demonstrate coupling of the zero-phonon line of individual nitrogen-vacancy centers and the modes of microring resonators fabricated in single-crystal diamond. A zero-phonon line enhancement exceeding ten-fold is estimated from lifetime measurements at cryogenic temperatures. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics.Comment: 5 pages, 4 figure

    Data-driven honeybee antennal lobe model suggests how stimulus-onset asynchrony can aid odour segregation

    Get PDF
    Insects have a remarkable ability to identify and track odour sources in multi-odour backgrounds. Recent behavioural experiments show that this ability relies on detecting millisecond stimulus asynchronies between odourants that originate from different sources. Honeybees, Apis mellifera , are able to distinguish mixtures where both odourants arrive at the same time (synchronous mixtures) from those where odourant onsets are staggered (asynchronous mixtures) down to an onset delay of only 6 ms. In this paper we explore this surprising ability in a model of the insects' primary olfactory brain area, the antennal lobe. We hypothesize that a winner-take-all inhibitory network of local neurons in the antennal lobe has a symmetry-breaking effect, such that the response pattern in projection neurons to an asynchronous mixture is different from the response pattern to the corresponding synchronous mixture for an extended period of time beyond the initial odourant onset where the two mixture conditions actually differ. The prolonged difference between response patterns to synchronous and asynchronous mixtures could facilitate odour segregation in downstream circuits of the olfactory pathway. We present a detailed data-driven model of the bee antennal lobe that reproduces a large data set of experimentally observed physiological odour responses, successfully implements the hypothesised symmetry-breaking mechanism and so demonstrates that this mechanism is consistent with our current knowledge of the olfactory circuits in the bee brain

    Looking inside the black box: assessing model-based learning and inquiry in BioLogica TM

    Get PDF
    Abstract: The Modeling Across the Curriculum Project (MAC; IERI # 0115699, Oct 2001-2006) used real-time assessments to facilitate student learning and model-based inquiry among high school students. We developed technology, materials, and processes that enabled us to monitor and respond to students' actions. MAC learning activities engage students in a progressive model-building approach Looking inside the black box 16

    Variable response to phosphorus mitigation measures across the nutrient transfer continuum in a dairy grassland catchment

    Get PDF
    peer-reviewedPhosphorus (P) loss from soils to water can be a major pressure on freshwater quality and dairy farming, with higher animal stocking rates, may lead to potentially greater nutrient source pressures. In many countries with intensive agriculture, regulation of P management aims to minimise these losses. This study examined the P transfer continuum, from source to impact, in a dairy-dominated, highly stocked, grassland catchment with free-draining soils over three years. The aim was to measure the effects of P source management and regulation on P transfer across the nutrient transfer continuum and subsequent water quality and agro-economic impacts. Reduced P source pressure was indicated by: (a) lower average farm-gate P balances (2.4 kg ha−1 yr−1), higher P use efficiencies (89%) and lower inorganic fertilizer P use (5.2 kg ha−1 yr−1) relative to previous studies; (b) almost no recorded P application during the winter closed period, when applications were prohibited, to avoid incidental transfers; and (c) decreased proportions of soils with excessive P concentrations (32–24%). Concurrently, production and profitability remained comparable with the top 10% of dairy farmers nationally with milk outputs of 14,585 l ha−1, and gross margins of € 3130 ha−1. Whilst there was some indication of a response in P delivery in surface water with declines in quick flow and interflow pathway P concentrations during the winter closed period for P application, delayed baseflows in the wetter third year resulted in elevated P concentrations for long durations and there were no clear trends of improving stream biological quality. This suggests a variable response to policy measures between P source pressure and delivery/impact where the strength of any observable trend is greater closer to the source end of the nutrient transfer continuum and a time lag occurs at the other end. Policy monitoring and assessment efforts will need to be cognisant of this
    • …
    corecore