65 research outputs found
Polariton propagation in weak confinement quantum wells
Exciton-polariton propagation in a quantum well, under centre-of-mass
quantization, is computed by a variational self-consistent microscopic theory.
The Wannier exciton envelope functions basis set is given by the simple
analytical model of ref. [1], based on pure states of the centre-of-mass wave
vector, free from fitting parameters and "ad hoc" (the so called additional
boundary conditions-ABCs) assumptions. In the present paper, the former
analytical model is implemented in order to reproduce the centre-of-mass
quantization in a large range of quantum well thicknesses (5a_B < L < inf.).
The role of the dynamical transition layer at the well/barrier interfaces is
discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier
exciton eigenstates are computed, and compared with various theoretical models
with different degrees of accuracy. Exciton-polariton transmission spectra in
large quantum wells (L>> a_B) are computed and compared with experimental
results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The
sound agreement between theory and experiment allows to unambiguously assign
the exciton-polariton dips of the transmission spectrum to the pure states of
the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.
Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons
We study theoretically the ultrafast nonlinear optical response of quantum
well excitons in a perpendicular magnetic field. We show that for
magnetoexcitons confined to the lowest Landau levels, the third-order
four-wave-mixing (FWM) polarization is dominated by the exciton-exciton
interaction effects. For repulsive interactions, we identify two regimes in the
time-evolution of the optical polarization characterized by exponential and
{\em power law} decay of the FWM signal. We describe these regimes by deriving
an analytical solution for the memory kernel of the two-exciton wave-function
in strong magnetic field. For strong exciton-exciton interactions, the decay of
the FWM signal is governed by an antibound resonance with an
interaction-dependent decay rate. For weak interactions, the continuum of
exciton-exciton scattering states leads to a long tail of the time-integrated
FWM signal for negative time delays, which is described by the product of a
power law and a logarithmic factor. By combining this analytic solution with
numerical calculations, we study the crossover between the exponential and
non-exponential regimes as a function of magnetic field. For attractive
exciton-exciton interaction, we show that the time-evolution of the FWM signal
is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig
Transient four-wave mixing in T-shaped GaAs quantum wires
The binding energy of excitons and biexcitons and the exciton dephasing in T-shaped GaAs quantum wires is investigated by transient four-wave mixing. The T-shaped structure is fabricated by cleaved-edge overgrowth, and its geometry is engineered to optimize the one-dimensional confinement. In this wire of 6.6×24 nm2 size, we find a one-dimensional confinement of more than 20 meV, an inhomogeneous broadening of 3.4 meV, an exciton binding energy of 12 meV, and a biexciton binding energy of 2.0 meV. A dispersion of the homogeneous linewidth within the inhomogeneous broadening due to phonon-assisted relaxation is observed. The exciton acoustic-phonon-scattering coefficient of 6.1±0.5 μeV/K is larger than in comparable quantum-well structures
H2S events in the Peruvian oxygen minimum zone facilitate enhanced dissolved Fe concentrations
Dissolved iron (DFe) concentrations in oxygen minimum zones (OMZs) of Eastern Boundary Upwelling Systems are enhanced as a result of high supply rates from anoxic sediments. However, pronounced variations in DFe concentrations in anoxic coastal waters of the Peruvian OMZ indicate that there are factors in addition to dissolved oxygen concentrations (O2) that control Fe cycling. Our study demonstrates that sediment-derived reduced Fe (Fe(II)) forms the main DFe fraction in the anoxic/euxinic water column off Peru, which is responsible for DFe accumulations of up to 200 nmol L-1. Lowest DFe values were observed in anoxic shelf waters in the presence of nitrate and nitrite. This reflects oxidation of sediment-sourced Fe(II) associated with nitrate/nitrite reduction and subsequent removal as particulate Fe(III) oxyhydroxides. Unexpectedly, the highest DFe levels were observed in waters with elevated concentrations of hydrogen sulfide (up to 4 µmol L-1) and correspondingly depleted nitrate/nitrite concentrations (<0.18 µmol L-1). Under these conditions, Fe removal was reduced through stabilization of Fe(II) as aqueous iron sulfide (FeSaqu) which comprises complexes (e.g., FeSH+) and clusters (e.g., Fe2S2|4H2O). Sulfidic events on the Peruvian shelf consequently enhance Fe availability, and may increase in frequency in future due to projected expansion and intensification of OMZs
Subcortical Hypoperfusion following Surgery For Aneurysmal Subarachnoid Haemorrhage: Implications For Cognitive Performance?
The incidence and severity of cognitive deficits after surgery for aneurysmal subarachnoid haemorrhage and their relationship to aneurysm site remains controversial. The aim of this study was to investigate the pattern of regional cerebral blood flow which exists in patients one year post-surgery and to identify whether different patterns exist which may be related to the type of cognitive deficit or the location of the aneurysm. 62 patients underwent cognitive assessment and HMPAO SPECT imaging at a mean time of 12 months following surgery. Results were compared to those from healthy control subjects (n = 55 for neuropsychological testing; n = 14 for SPECT imaging). In the patient group, significant stable cognitive deficits occurred in all cognitive domains but no cognitive measure differentiated aneurysm site. On SPECT images, statistical parametric mapping identified a large common area of subcortical hypoperfusion in the patient group as a whole. The findings of this study suggest a possible link between reduced subcortical function and the extent and severity of cognitive deficits
Recommended from our members
A domestic cat whole exome sequencing resource for trait discovery.
Over 94 million domestic cats are susceptible to cancers and other common and rare diseases. Whole exome sequencing (WES) is a proven strategy to study these disease-causing variants. Presented is a 35.7 Mb exome capture design based on the annotated Felis_catus_9.0 genome assembly, covering 201,683 regions of the cat genome. Whole exome sequencing was conducted on 41 cats with known and unknown genetic diseases and traits, of which ten cats had matching whole genome sequence (WGS) data available, used to validate WES performance. At 80 × mean exome depth of coverage, 96.4% of on-target base coverage had a sequencing depth > 20-fold, while over 98% of single nucleotide variants (SNVs) identified by WGS were also identified by WES. Platform-specific SNVs were restricted to sex chromosomes and a small number of olfactory receptor genes. Within the 41 cats, we identified 31 previously known causal variants and discovered new gene candidate variants, including novel missense variance for polycystic kidney disease and atrichia in the Peterbald cat. These results show the utility of WES to identify novel gene candidate alleles for diseases and traits for the first time in a feline model
A domestic cat whole exome sequencing resource for trait discovery
Over 94 million domestic cats are susceptible to cancers and other common and rare diseases. Whole exome sequencing (WES) is a proven strategy to study these disease-causing variants. Presented is a 35.7 Mb exome capture design based on the annotated Felis_catus_9.0 genome assembly, covering 201,683 regions of the cat genome. Whole exome sequencing was conducted on 41 cats with known and unknown genetic diseases and traits, of which ten cats had matching whole genome sequence (WGS) data available, used to validate WES performance. At 80 × mean exome depth of coverage, 96.4% of on-target base coverage had a sequencing depth \u3e 20-fold, while over 98% of single nucleotide variants (SNVs) identified by WGS were also identified by WES. Platform-specific SNVs were restricted to sex chromosomes and a small number of olfactory receptor genes. Within the 41 cats, we identified 31 previously known causal variants and discovered new gene candidate variants, including novel missense variance for polycystic kidney disease and atrichia in the Peterbald cat. These results show the utility of WES to identify novel gene candidate alleles for diseases and traits for the first time in a feline model
- …