248 research outputs found

    Overtourism dystopias and socialist utopias: Towards an urban armature for dubrovnik

    Get PDF
    The recent discourse on overtourism and anti-tourist attitudes has opened up the space to reimagine tourism development and planning. Employing an interdisciplinary approach we combined research by design methodology and rapid ethnography in order to problematise Dubrovnik’s overtourism. The research turned for inspiration to the ex-Yugoslavian resorts and integrated planning. The paper advocates a praxical, socially informed and environmentally aware perspective and proposes interventions that offer the potential of practical applications in Dubrovnik’s urban planning. Focusing on the need for connectivity and continuity the interventions address issues of segregation and marginalisation of local groups, such as students and seasonal workers. Inspired by the utopian ideals of socialist resorts, the research developed an urban armature that aims to connect the different parts of the old and modern city, reclaim tourist spaces for locals, and create open spaces in local areas

    Predictive value of S100-B and copeptin for outcomes following seizure: the BISTRO International Cohort Study.

    Get PDF
    OBJECTIVE: To evaluate the performance of S100-B protein and copeptin, in addition to clinical variables, in predicting outcomes of patients attending the emergency department (ED) following a seizure. METHODS: We prospectively included adult patients presented with an acute seizure, in four EDs in France and the United Kingdom. Participants were followed up for 28 days. The primary endpoint was a composite of seizure recurrence, all-cause mortality, hospitalization or rehospitalisation, or return visit in the ED within seven days. RESULTS: Among the 389 participants included in the analysis, 156 (40%) experienced the primary endpoint within seven days and 195 (54%) at 28 days. Mean levels of both S100-B (0.11 μg/l [95% CI 0.07-0.20] vs 0.09 μg/l [0.07-0.14]) and copeptin (23 pmol/l [9-104] vs 17 pmol/l [8-43]) were higher in participants meeting the primary endpoint. However, both biomarkers were poorly predictive of the primary outcome with a respective area under the receiving operator characteristic curve of 0.57 [0.51-0.64] and 0.59 [0.54-0.64]. Multivariable logistic regression analysis identified higher age (odds ratio [OR] 1.3 per decade [1.1-1.5]), provoked seizure (OR 4.93 [2.5-9.8]), complex partial seizure (OR 4.09 [1.8-9.1]) and first seizure (OR 1.83 [1.1-3.0]) as independent predictors of the primary outcome. A second regression analysis including the biomarkers showed no additional predictive benefit (S100-B OR 3.89 [0.80-18.9] copeptin OR 1 [1.00-1.00]). CONCLUSION: The plasma biomarkers S100-B and copeptin did not improve prediction of poor outcome following seizure. Higher age, a first seizure, a provoked seizure and a partial complex seizure are independently associated with adverse outcomes

    Cerebellum Abnormalities in Idiopathic Generalized Epilepsy with Generalized Tonic-Clonic Seizures Revealed by Diffusion Tensor Imaging

    Get PDF
    Although there is increasing evidence suggesting that there may be subtle abnormalities in idiopathic generalized epilepsy (IGE) patients using modern neuroimaging techniques, most of these previous studies focused on the brain grey matter, leaving the underlying white matter abnormalities in IGE largely unknown, which baffles the treatment as well as the understanding of IGE. In this work, we adopted multiple methods from different levels based on diffusion tensor imaging (DTI) to analyze the white matter abnormalities in 14 young male IGE patients with generalized tonic-clonic seizures (GTCS) only, comparing with 29 age-matched male healthy controls. First, we performed a voxel-based analysis (VBA) of the fractional anisotropy (FA) images derived from DTI. Second, we used a tract-based spatial statistics (TBSS) method to explore the alterations within the white matter skeleton of the patients. Third, we adopted region-of-interest (ROI) analyses based on the findings of VBA and TBSS to further confirm abnormal brain regions in the patients. At last, considering the convergent evidences we found by VBA, TBSS and ROI analyses, a subsequent probabilistic fiber tractography study was performed to investigate the abnormal white matter connectivity in the patients. Significantly decreased FA values were consistently observed in the cerebellum of patients, providing fresh evidence and new clues for the important role of cerebellum in IGE with GTCS

    Migralepsy, hemicrania epileptica, post-ictal headache and “ictal epileptic headache”: a proposal for terminology and classification revision

    Get PDF
    Despite the fact that migraine and epilepsy are among the commoner brain diseases and that comorbidity of these conditions is well known, only few reports of migralepsy and hemicrania epileptica (HE) have been published according to the current ICHD-II criteria. Particularly, ICHD-II describes “migraine-triggered seizure” (i.e., migralepsy) among complications of migraine at “1.5.5” (as a rare event in which a seizure happens during migrainous aura), while hemicrania epileptica (coded at “7.6.1”) and post-ictal headache (coded at “7.6.2”) are described among headaches attributed to epileptic seizure. However, to date neither the International Headache Society nor the International League against Epilepsy mention that headache/migraine may be the sole ictal epileptic manifestation. Based on the current knowledge, migralepsy is highly unlikely to exist as such. We, therefore, propose to delete this term until clear evidence its existence is provided. Moreover, we herein propose a revision of terminology and classification criteria to properly represent the migraine/headache relationships. We suggest the term “ictal epileptic headache” in cases in which headache/migraine is the sole ictal epileptic manifestation

    Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons). This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random) applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability.</p> <p>Methods</p> <p>Subjects (n = 6) were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses) and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise) applied to the triceps surae muscle group. In an additional investigation, M<sub>max </sub>and F-waves were elicited at different times before or after the vibratory stimulation.</p> <p>Results</p> <p>The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves.</p> <p>Conclusions</p> <p>These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC) due to the spinal recruitment of motoneurons. The association of vibration and electrical stimulation could be beneficial for many therapeutic interventions and vibration-based exercise programs. The command for the vibration-induced extra torques presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms.</p

    From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid?

    Get PDF
    The temporal coincidence of sleep spindles and spike-and-wave discharges (SWDs) in patients with idiopathic generalized epilepsies, together with the transformation of spindles into SWDs following intramuscular injection of the weak GABAA receptor (GABAAR) antagonist, penicillin, in an experimental model, brought about the view that SWDs may represent ‘perverted’ sleep spindles. Over the last 20 years, this hypothesis has received considerable support, in particular by in vitro studies of thalamic oscillations following pharmacological/genetic manipulations of GABAARs. However, from a critical appraisal of the evidence in absence epilepsy patients and well-established models of absence epilepsy it emerges that SWDs can occur as frequently during wakefulness as during sleep, with their preferential occurrence in either one of these behavioural states often being patient dependent. Moreover, whereas the EEG expression of both SWDs and sleep spindles requires the integrity of the entire cortico-thalamo-cortical network, SWDs initiates in cortex while sleep spindles in thalamus. Furthermore, the hypothesis of a reduction in GABAAR function across the entire cortico-thalamo-cortical network as the basis for the transformation of sleep spindles into SWDs is no longer tenable. In fact, while a decreased GABAAR function may be present in some cortical layers and in the reticular thalamic nucleus, both phasic and tonic GABAAR inhibitions of thalamo-cortical neurons are either unchanged or increased in this epileptic phenotype. In summary, these differences between SWDs and sleep spindles question the view that the EEG hallmark of absence seizures results from a transformation of this EEG oscillation of natural sleep
    corecore