507 research outputs found
Improved Constraints on the Acceleration History of the Universe and the Properties of the Dark Energy
We extend and apply a model-independent analysis method developed earlier by
Daly & Djorgovski to new samples of supernova standard candles, radio galaxy
and cluster standard rulers, and use it to constrain physical properties of the
dark energy as functions of redshift. Similar results are obtained for the
radio galaxy and supernova data sets. The first and second derivatives of the
distance are compared directly with predictions in a standard model based on
General Relativity. The good agreement indicates that General Relativity
provides an accurate description of the data on look-back time scales of about
ten billion years. The first and second derivatives are combined to obtain the
acceleration parameter, assuming only the validity of the Robertson-Walker
metric, independent of a theory of gravity and of the physical nature of the
dark energy. The acceleration of the universe at the current epoch is indicated
by the analysis. The effect of non-zero space curvature on q(z) is explored. We
solve for the pressure, energy density, equation of state, and potential and
kinetic energy of the dark energy as functions of redshift assuming that
General Relativity is the correct theory of gravity, and the results indicate
that a cosmological constant in a spatially flat universe provides a good
description of each of these quantities over the redshift range from zero to
about one. We define a new function, the dark energy indicator, in terms of the
first and second derivatives of the coordinate distance and show how this can
be used to measure deviations of w from -1 and to obtain a new and independent
measure of Omega.Comment: 46 pages, submitted for publicatio
A View through Faraday's Fog 2: Parsec Scale Rotation Measures in 40 AGN
Results from a survey of the parsec scale Faraday rotation measure properties
for 40 quasars, radio galaxies and BL Lac objects are presented. Core rotation
measures for quasars vary from approximately 500 to several thousand radians
per meter squared. Quasar jets have rotation measures which are typically 500
radians per meter squared or less. The cores and jets of the BL Lac objects
have rotation measures similar to those found in quasar jets. The jets of radio
galaxies exhibit a range of rotation measures from a few hundred radians per
meter squared to almost 10,000 radians per meter squared for the jet of M87.
Radio galaxy cores are generally depolarized, and only one of four radio
galaxies (3C-120) has a detectable rotation measure in the core. Several
potential identities for the foreground Faraday screen are considered and we
believe the most promising candidate for all the AGN types considered is a
screen in close proximity to the jet. This constrains the path length to
approximately 10 parsecs, and magnetic field strengths of approximately 1
microGauss can account for the observed rotation measures. For 27 out of 34
quasars and BL Lacs their optically thick cores have good agreement to a lambda
squared law. This requires the different tau = 1 surfaces to have the same
intrinsic polarization angle independent of frequency and distance from the
black hole.Comment: Accepted to the Astrophysical Journal: 71 pages, 40 figure
STIS spectroscopy of the emission line gas in the nuclei of nearby FR-I galaxies
We present the results of the analysis of a set of medium resolution spectra,
obtained by the Space Telescope Imaging Spectrograph on board the Hubble Space
Telescope, of the emission line gas present in the nuclei of a complete sample
of 21 nearby, early-type galaxies with radio jets (the UGC FR-I Sample). For
each galaxy nucleus we present spectroscopic data in the region of H-alpha and
the dervived kinematics.
We find that in 67% of the nuclei the gas appears to be rotating and, with
one exception, the cases where rotation is not seen are either face on or have
complex central morphologies. We find that in 62% of the nuclei the fit to the
central spectrum is improved by the inclusion of a broad component. The broad
components have a mean velocity dispersion of 1349 +/- 345 km\s and are
redshifted from the narrow line components (assuming an origin in H-alpha) by
486 +/- 443 km\s.Comment: 119 pages, 26 figures, ApJS Accepted, version with full figures
available at http://www.astro.columbia.edu/~jake/pub/fr1datapaper.pd
Chandra Discovery of a 300 kpc X-ray Jet in the GPS Quasar PKS1127-145
We have discovered an X-ray jet with Chandra imaging of the z=1.187
radio-loud quasar PKS1127-145. In this paper we present the Chandra X-ray data,
follow-up VLA observations, and optical imaging using the HST WFPC2. The X-ray
jet contains 273+/-5 net counts in 27ksec and extends ~30 arcsec, from the
quasar core, corresponding to a minimum projected linear size of ~330/h_50 kpc.
The evaluation of the X-ray emission processes is complicated by the observed
offsets between X-ray and radio brightness peaks. We discuss the problems posed
by these observations to jet models. In addition, PKS1127-145 is a Giga-Hertz
Peaked Spectrum radio source, a member of the class of radio sources suspected
to be young or ``frustrated'' versions of FRI radio galaxies. However the
discovery of an X-ray and radio jet extending well outside the host galaxy of
PKS1127-145 suggests that activity in this and other GPS sources may be
long-lived and complex.Comment: 22 pages, 11 ps figures, 1 figure in a JPG file, 3 tables. AASTEX.
Accepted by The Astrophysical Journa
The Luminosity Profiles of Brightest Cluster Galaxies
(Abridged) We have derived detailed R band luminosity profiles and structural
parameters for a total of 430 brightest cluster galaxies (BCGs), down to a
limiting surface brightness of 24.5 mag/arcsec^2. Light profiles were initially
fitted with a Sersic's R^(1/n) model, but we found that 205 (~48) BCGs require
a double component model to accurately match their light profiles. The best fit
for these 205 galaxies is an inner Sersic model, with indices n~1-7, plus an
outer exponential component.
Thus, we establish the existence of two categories of the BCGs luminosity
profiles: single and double component profiles. We found that double profile
BCGs are brighter ~0.2 mag than single profile BCG. In fact, the
Kolmogorov-Smirnov test applied to these subsamples indicates that they have
different total magnitude distributions, with mean values M_R=-23.8 +/- 0.6 mag
for single profile BCGs and M_R=-24.0 +/- 0.5 mag for double profile BCGs. We
find that partial luminosities for both subsamples are indistinguishable up to
r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2
mag brighter for double profile BCGs. This result indicates that extra-light
for double profile BCGs does not come from the inner region but from the outer
regions of these galaxies.
The best fit slope of the Kormendy relation for the whole sample is a = 3.13
+/- 0.04$. However, when fitted separately, single and double profile BCGs show
different slopes: a_(single) = 3.29 +/- 0.06 and a_(double)= 2.79 +/- 0.08.
On the other hand, we did not find differences between these two BCGs
categories when we compared global cluster properties such as the BCG-projected
position relative to the cluster X-ray center emission, X-ray luminosity, or
BCG orientation with respect to the cluster position angle.Comment: August 2011 issue of ApJS, volume 195, 15
http://iopscience.iop.org/0067-0049/195/2/1
Radio Emission from GRO J1655-40 during the 1994 Jet Ejection Episodes
We report multifrequency radio observations of GRO J1655-40 obtained with the
Australia Telescope Compact Array, the Molonglo Observatory Synthesis Telescope
and the Hartebeesthoek Radio Astronomy Observatory at the time of the major
hard X-ray and radio outbursts in 1994 August-September. The radio emission
reached levels of the order of a few Jy and was found to be linearly polarized
by up to 10%, indicating a synchrotron origin. The light curves are in good
agreement with those measured with the VLA, but our closer time sampling has
revealed two new short-lived events and significant deviations from a simple
exponential decay. The polarization data show that the magnetic field is well
ordered and aligned at right angles to the radio jets for most of the
monitoring period. The time evolution of the polarization cannot be explained
solely in terms of a simple synchrotron bubble model, and we invoke a hybrid
`core-lobe' model with a core which contributes both synchrotron and free-free
emission and `lobes' which are classical synchrotron emitters.Comment: 36 pages, 5 tables, 9 figures; accepted for publication in Ap
Dominant Nuclear Outflow Driving Mechanisms in Powerful Radio Galaxies
In order to identify the dominant nuclear outflow mechanisms in Active
Galactic Nuclei, we have undertaken deep, high resolution observations of two
compact radio sources (PKS 1549-79 and PKS 1345+12) with the Advanced Camera
for Surveys (ACS) aboard the Hubble Space Telescope. Not only are these targets
known to have powerful emission line outflows, but they also contain all the
potential drivers for the outflows: relativistic jets, quasar nuclei and
starbursts. ACS allows the compact nature (<0.15") of these radio sources to be
optically resolved for the first time. Through comparison with existing radio
maps we have seen consistency in the nuclear position angles of both the
optical emission line and radio data. There is no evidence for bi-conical
emission line features on the large-scale and there is a divergance in the
relative position angles of the optical and radio structure. This enables us to
exclude starburst driven outflows. However, we are unable to clearly
distinguish between radiative AGN wind driven outflows and outflows powered by
relativistic radio jets. The small scale bi-conical features, indicative of
such mechanisms could be below the resolution limit of ACS, especially if
aligned close to the line of sight. In addition, there may be offsets between
the radio and optical nuclei induced by heavy dust obscuration, nebular
continuum or scattered light from the AGN.Comment: 9 pages, 8 figures, emulateapj, ApJ Accepte
Radio-Excess IRAS Galaxies: PMN/FSC Sample Selection
A sample of 178 extragalactic objects is defined by correlating the 60 micron
IRAS FSC with the 5 GHz PMN catalog. Of these, 98 objects lie above the
radio/far-infrared relation for radio-quiet objects. These radio-excess
galaxies and quasars have a uniform distribution of radio excesses and appear
to be a new population of active galaxies not present in previous
radio/far-infrared samples. The radio-excess objects extend over the full range
of far-infrared luminosities seen in extragalactic objects. Objects with small
radio excesses are more likely to have far-infrared colors similar to
starbursts, while objects with large radio excesses have far-infrared colors
typical of pure AGN. Some of the most far-infrared luminous radio-excess
objects have the highest far-infrared optical depths. These are good candidates
to search for hidden broad line regions in polarized light or via near-infrared
spectroscopy. Some low far-infrared luminosity radio-excess objects appear to
derive a dominant fraction of their far-infrared emission from star formation,
despite the dominance of the AGN at radio wavelengths. Many of the radio-excess
objects have sizes likely to be smaller than the optical host, but show
optically thin radio emission. We draw parallels between these objects and high
radio luminosity Compact Steep-Spectrum (CSS) and GigaHertz Peaked-Spectrum
(GPS) objects. Radio sources with these characteristics may be young AGN in
which the radio activity has begun only recently. Alternatively, high central
densities in the host galaxies may be confining the radio sources to compact
sizes. We discuss future observations required to distinguish between these
possibilities and determine the nature of radio-excess objects.Comment: Submitted to AJ. 44 pages, 11 figures. A version of the paper with
higher quality figures is available from
http://www.mso.anu.edu.au/~cdrake/PMNFSC/paperI
A Radio Study of the Seyfert galaxy Markarian 6: Implications for Seyfert life-cycles
We have carried out an extensive radio study with the Very Large Array on the
Seyfert 1.5 galaxy Mrk 6 and imaged a spectacular radio structure in the
source. The radio emission occurs on three different spatial scales, from ~7.5
kpc bubbles to ~1.5 kpc bubbles lying nearly orthogonal to them and a ~1 kpc
radio jet lying orthogonal to the kpc-scale bubble. To explain the complex
morphology, we first consider a scenario in which the radio structures are the
result of superwinds ejected by a nuclear starburst. However, recent Spitzer
observations of Mrk 6 provide an upper limit to the star formation rate (SFR)
of ~5.5 M_sun/yr, an estimate much lower than the SFR of ~33 M_sun/yr derived
assuming that the bubbles are a result of starburst winds energized by
supernovae explosions. Thus, a starburst alone cannot meet the energy
requirements for the creation of the bubbles in Mrk 6. We show that a single
plasmon model is energetically infeasible, and we argue that a jet-driven
bubble model while energetically feasible does not produce the complex radio
morphologies. Finally, we consider a model in which the complex radio structure
is a result of an episodically-powered precessing jet that changes its
orientation. This model is the most attractive as it can naturally explain the
complex radio morphology, and is consistent with the energetics, the spectral
index and the polarization structure. Radio emission in this scenario is a
short-lived phenomenon in the lifetime of a Seyfert galaxy which results due to
an accretion event.Comment: Accepted for publication in Ap
An infrared survey of brightest cluster galaxies: Paper I
We report on an imaging survey with the Spitzer Space Telescope of 62
brightest cluster galaxies with optical line emission. These galaxies are
located in the cores of X-ray luminous clusters selected from the ROSAT All-Sky
Survey. We find that about half of these sources have a sign of excess infrared
emission; 22 objects out of 62 are detected at 70 microns, 18 have 8 to 5.8
micron flux ratios above 1.0 and 28 have 24 to 8 micron flux ratios above 1.0.
Altogether 35 of 62 objects in our survey exhibit at least one of these signs
of infrared excess. Four galaxies with infrared excesses have a 4.5/3.6 micron
flux ratio indicating the presence of hot dust, and/or an unresolved nucleus at
8 microns. Three of these have high measured [OIII](5007A)/Hbeta flux ratios
suggesting that these four, Abell 1068, Abell 2146, and Zwicky 2089, and
R0821+07, host dusty active galactic nuclei (AGNs). 9 objects (including the
four hosting dusty AGNs) have infrared luminosities greater than 10^11 L_sol
and so can be classified as luminous infrared galaxies (LIRGs). Excluding the
four systems hosting dusty AGNs, the excess mid-infrared emission in the
remaining brightest cluster galaxies is likely related to star formation.Comment: accepted for publication in ApJ
- âŠ