560 research outputs found

    Nuclear medium modifications of the NN interaction via quasielastic (p⃗,p⃗′\vec p,\vec p ') and (p⃗,n⃗\vec{p},\vec{n}) scattering

    Full text link
    Within the relativistic PWIA, spin observables have been recalculated for quasielastic (p⃗,p⃗′\vec p,\vec p ') and (p⃗,n⃗\vec p,\vec n) reactions on a 40^{40}Ca target. The incident proton energy ranges from 135 to 300 MeV while the transferred momentum is kept fixed at 1.97 fm^{-1}. In the present calculations, new Horowitz-Love--Franey relativistic NN amplitudes have been generated in order to yield improved and more quantitative spin observable values than before. The sensitivities of the various spin observables to the NN interaction parameters, such as (1) the presence of the surrounding nuclear medium, (2) a pseudoscalar versus a pseudovector interaction term, and (3) exchange effects, point to spin observables which should preferably be measured at certain laboratory proton energies, in order to test current nuclear models. This study also shows that nuclear medium effects become more important at lower proton energies (≤\leq 200 MeV). A comparison to the limited available data indicates that the relativistic parametrization of the NN scattering amplitudes in terms of only the five Fermi invariants (the SVPAT form) is questionable.Comment: 10 pages, 6 Postscript figures, uses psfig.sty and article.sty, submitted to Phys. Rev.

    former title: A theory for the emergence of neocortical network architecture

    Get PDF
    Developmental programs that guide neurons and their neurites into specific subvolumes of the mammalian neocortex give rise to lifelong constraints for the formation of synaptic connections. To what degree do these constraints affect cortical wiring diagrams? Here we introduce an inverse modeling approach to show how cortical networks would appear if they were solely due to the spatial distributions of neurons and neurites. We find that neurite packing density and morphological diversity will inevitably translate into non-random pairwise and higher-order connectivity statistics. More importantly, we show that these non-random wiring properties are not arbitrary, but instead reflect the specific structural organization of the underlying neuropil. Our predictions are consistent with the empirically observed wiring specificity from subcellular to network scales. Thus, independent from learning and genetically encoded wiring rules, many of the properties that define the neocortex’ characteristic network architecture may emerge as a result of neuron and neurite development

    Synthesis of triazole-linked 2-trichloromethylquinazolines and exploration of their efficacy against P. falciparum

    Get PDF
    Using 2-trichloromethylquinazoline as scaffold, seven novel triazole-linked compounds have been synthesized using CuAAC chemistry. The in vitrobiological activity of four of the compounds on the Plasmodium falciparumchloroquine-sensitive strain NF54 was then determined. The compounds which were tested showed moderate activity with 1.45 /iM as the lowest inhibitory concentration

    The development of a toxicity database using freshwater macroinvertebrates, and its application to the protection of South African water resources

    Get PDF
    There is a growing international trend towards the protection of freshwater resources from pollution by imposing instream guidelines and specified waste-discharge conditions. Current methods for devising freshwater quality guidelines are based on species sensitivity distributions (SSDs) that are used to identify pollutant concentrations, ensuring the protection of a modelled percentage of species (95% protection is a common goal). SSDs are derived from the toxicity test results of as many taxa as possible for each polluting substance. Waste-discharge licences can be for single substances, specified in terms of chemical concentrations, and derived in conjunction with instream guidelines; or for complex mixtures, specified in terms of toxic units. In both cases toxicity test results are the core data used. The emphasis on SSDs calls into question the species constituting the test populations. It is likely that SSDs based in part on the responses of local organisms will achieve superior site-specific ecological protection. Until the early 1990s, there were very few data on the tolerances of South African freshwater organisms. In the intervening decade, the Unilever Centre for Environmental Water Quality at Rhodes University has developed a toxicity database that, to date, records the responses of 21 South African freshwater taxa to 26 single-substance pollutants or mixtures. This is the most comprehensive database of South African toxicity responses available and has been used in the drawing up of methods and guidelines to protect water resources. This paper aims to make these data available and to describe applications of the data using selected case studies

    Human Synapses Show a Wide Temporal Window for Spike-Timing-Dependent Plasticity

    Get PDF
    Throughout our lifetime, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. Synapses can bi-directionally alter strength and the magnitude and sign depend on the millisecond timing of presynaptic and postsynaptic action potential firing. Recent findings on laboratory animals have shown that neurons can show a variety of temporal windows for spike-timing-dependent plasticity (STDP). It is unknown what synaptic learning rules exist in human synapses and whether similar temporal windows for STDP at synapses hold true for the human brain. Here, we directly tested in human slices cut from hippocampal tissue removed for surgical treatment of deeper brain structures in drug-resistant epilepsy patients, whether adult human synapses can change strength in response to millisecond timing of pre- and postsynaptic firing. We find that adult human hippocampal synapses can alter synapse strength in response to timed pre- and postsynaptic activity. In contrast to rodent hippocampal synapses, the sign of plasticity does not sharply switch around 0-ms timing. Instead, both positive timing intervals, in which presynaptic firing preceded the postsynaptic action potential, and negative timing intervals, in which postsynaptic firing preceded presynaptic activity down to −80 ms, increase synapse strength (tLTP). Negative timing intervals between −80 to −130 ms induce a lasting reduction of synapse strength (tLTD). Thus, similar to rodent synapses, adult human synapses can show spike-timing-dependent changes in strength. The timing rules of STDP in human hippocampus, however, seem to differ from rodent hippocampus, and suggest a less strict interpretation of Hebb's predictions
    • …
    corecore