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SUMMARY
The neurons in the cerebral cortex are not randomly interconnected. This specificity in wiring can result from
synapse formation mechanisms that connect neurons, depending on their electrical activity and genetically
defined identity. Here, we report that the morphological properties of the neurons provide an additional
prominent source by which wiring specificity emerges in cortical networks. This morphologically determined
wiring specificity reflects similarities between the neurons’ axo-dendritic projections patterns, the packing
density, and the cellular diversity of the neuropil. The higher these three factors are, the more recurrent is
the topology of the network. Conversely, the lower these factors are, the more feedforward is the network’s
topology. These principles predict the empirically observed occurrences of clusters of synapses, cell type-
specific connectivity patterns, and nonrandom network motifs. Thus, we demonstrate that wiring specificity
emerges in the cerebral cortex at subcellular, cellular, and network scales from the specific morphological
properties of its neuronal constituents.
INTRODUCTION

Neuronal networks are implemented in the brain via a plethora of

molecular mechanisms, which form synaptic connections

between the neurons’ dendrites and axons (Bennett et al.,

2018; Berry and Nedivi, 2017; Lefebvre et al., 2015; Sanes and

Yamagata, 2009; Yogev and Shen, 2014). Axo-dendritic overlap

is, thus, necessary for the formation of synapses, as it constrains

which neurons could connect to one another and where along

their axonal and dendritic morphologies these connections

could occur. Yet, it is unclear to what degree the diverse

morphological properties of the neurons impact the architecture

of the networks they form (Rees et al., 2017).

One major challenge for answering this question is that axo-

dendritic overlap is generally not a sufficient condition for syn-

apse formation (Mishchenko et al., 2010; Briggman et al.,

2011; Brown and Hestrin, 2009; Kasthuri et al., 2015; Motta

et al., 2019). For example, the vast majority of axons in the

cerebral cortex remain unconnected to close-by dendrites, while

a subset of them forms clusters of synapses by connecting to

multiple spines along the same dendritic branch (Kasthuri

et al., 2015; Motta et al., 2019). Similarly, axo-dendritic overlap

does not account for the patterns of synaptic connections

between pairs of neurons (Holler et al., 2021) or for differences
This is an open access article under the CC BY-N
in connection probabilities that reflect the neurons’ cell types

(Brown and Hestrin, 2009). Moreover, cortical neurons form

network motifs—for example, feedforward loops—that generally

occur more (or less) frequently than expected for randomly

connected networks (Milo et al., 2002; Song et al., 2005). Such

nonrandom topologies could arise from simple sets of wiring

rules (Sanes and Yamagata, 2009; Yogev and Shen, 2014) or

via learning (Miner and Triesch, 2016). The absence of synaptic

connections despite axo-dendritic overlap, the occurrence of

clusters of synapses, cell type-specific connectivity, and

nonrandom topologies are interpreted as wiring specificity that

emerges from specific synapse formation mechanisms that con-

nect the neurons based on their genetically defined cellular iden-

tity and electrical activity (Kasthuri et al., 2015).

However, even when neurons are connected randomly by

axo-dendritic overlap, the resulting network models display spe-

cific connectivity patterns at subcellular and cellular scales (Bin-

zegger et al., 2004; Egger et al., 2014), as well as generally

nonrandom topologies (Egger et al., 2014; Gal et al., 2017).

Furthermore, morphological properties of the neurons—such

as dendrite polarity—can constitute a defining source for

nonrandom occurrences of network motifs (Gal et al., 2019).

These studies indicate that the empirically observed wiring

specificity might reflect morphological properties of the neurons,
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specific synapse formation mechanisms, or a combination

thereof. However, conclusive answers to the questions—

namely, how does neuron morphology impact connectivity,

and how can these principles be disentangled despite wiring

specificity that reflects the neurons’ identity and activity?—

remain unknown.

Here, we quantitatively address these questions by using a

statistical approach (Egger et al., 2014) that allows us to derive

how networks would appear in the absence of synapse forma-

tion mechanisms that result in wiring specificity (e.g., molecular

recognition of cell type and activity dependence). We apply this

approach to a dense model of the vibrissa-related part of the rat

primary somatosensory cortex—the barrel cortex (Narayanan

et al., 2017)—and to a dense reconstruction of a petascale vol-

ume of human cortex (Shapson-Coe et al., 2021). We find three

morphology-related factors that translate into specific pairwise

and higher-order connectivity patterns. We show that, in agree-

ment with empirical connectivity data, these factors predict the

general absence of synapses despite axo-dendritic overlap, oc-

currences of clusters of synapses, cell type-specific connectiv-

ity, and nonrandom network topologies.

RESULTS

We consider three factors by which neuron morphology con-

strains connectivity (Egger et al., 2014). For this purpose, we

take the dendrites and axons of all neurons that project into a

brain volume of interest into account (Figure 1A). First, we deter-

mine the respective subvolumes of the neuropil in which the

dendritic and axonal projection patterns of any pair of neurons

overlap (Figure 1B). Second, we determine the total numbers

of axonal boutons (i.e., presynaptic sites), dendritic spines, and

other postsynaptic sites along dendritic shafts and somata

within each subvolume, subsequently referred to as packing

density (Figure 1C). Third, we determine the numbers of neurons

that the axonal and dendritic branches within each subvolume

originate from, subsequently referred to as cellular diversity (Fig-

ure 1D). Based on the hence defined packing density and cellular

diversity of the neuropil, we determine all combinations by which

the neurons can connect with one another within each subvo-

lume (Figure 1E). We neither consider the trajectories of axonal

and dendritic branches within a subvolume, nor their respective

distances (Markram et al., 2015). Thus, the sole criterion for con-

nectivity is the presence of a pre- and postsynaptic site within the

same subvolume. However, we take the different postsynaptic

targets of excitatory (e.g., spines) and inhibitory boutons (e.g.,

shafts) into account (Figure 1E). Finally, we generate each of

the combinations by which the neurons can be connected within

and across subvolumes, and thereby derive the dense wiring

diagram for each of the network configurations that could

emerge in principle from axo-dendritic overlap (Figure 1F).

We calculate how likely each of the network configurations oc-

curs if all pre- and postsynaptic sites within a subvolume are

equally likely to connect to one another (Egger et al., 2014). For

this purpose, we assume that specific properties of the neurons,

such as cell type and activity, do not increase or decrease the

probability of being connected.We formulate these assumptions

mathematically (Equations 1–3 in the STAR Methods), and
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thereby derive the likelihoods for how networks would appear

if they were solely due to the morphological properties of the

neurons (Figure 1F)—i.e., in the absence of synapse formation

mechanisms that introduce wiring specificity. Rather than

analyzing the connectivity patterns of particular network config-

urations, our statistical approach allows us to jointly analyze the

entire ensemble of network configurations (Gibbs, 1902).

Thereby, we can explore the impact of neuron morphology on

network architecture by deriving connectivity statistics from sub-

cellular to network scales that are shared between all network

configurations (Egger et al., 2014), irrespective of which partic-

ular neurons whose pre- and postsynaptic sites overlap are con-

nected (Figure 1G).

We apply our statistical approach first to the barrel cortex

model. The computational framework that we developed to

generate the model, including a comprehensive description of

the underlying assumptions was reported previously (Egger

et al., 2014), and is summarized in the STARMethods. Themodel

is based on dendrite and axon reconstructions that we obtained

via in vivo labeling of individual neurons across all layers of the

barrel cortex (Egger et al., 2015; Narayanan et al., 2015), and

in the primary thalamus of the vibrissal system (Oberlaender

et al., 2012a, 2012b)—the ventral posterior medial nucleus

(VPM). Here, we show that the model provides realistic and

robust estimates of the dendrite and axon projection patterns

for the major cortical cell types (Figure S1), as well as for the

packing density and cellular diversity in any subvolume of the

barrel cortex (Figure S2).

Neuron morphology translates into sparse connectivity
First, we test the impact of neuron morphology on pairwise con-

nectivity. For this purpose, we quantify the axo-dendritic over-

lap, packing density, and cellular diversity in the barrel cortex

model at different spatial resolutions (here, cubic subvolumes

with 1, 5, 10, 25, 50, or 100 mm edge lengths). We illustrate these

quantifications at the resolution of 50 mm (Figure S3) and exem-

plify how morphology impacts connectivity for three neurons

(Figure 2A)—a pyramidal neuron in layer 2 (L2PY), a pyramidal

tract neuron in layer 5 (L5PT), and a corticocortical neuron in

layer 6 (L6CC). At this resolution, each subvolume contains

more than 100,000 pre- and postsynaptic sites, respectively

(Figure 2B), which originate from more than 15,000 neurons.

The combination of possible connections within each subvolume

hence gives rise to an enormous number of network configura-

tions by which the neurons across the barrel cortex model can

connect to one another. In the vast majority of these configura-

tions, any particular overlapping axon-dendrite pair remains un-

connected, because their pre- and postsynaptic sites connect to

those of other neurons that overlap in this subvolume (Figure 2C).

An analysis of the ensemble reveals that in any network config-

uration, 99.6% ± 0.1% of the axon-dendrite pairs within any sub-

volume remain unconnected despite their overlap. The absence

of connections between overlapping branch pairs emerges irre-

spective of the spatial resolution at which overlap is determined

(Figure 2D). Because of the high packing density of the neuropil,

the number of axon-dendrite pairs generally exceeds the number

of synapses in a subvolume by one to two orders of magnitude.

Thus, axo-dendritic overlap could predict connectivity, but in



Figure 1. Concept for testing the impact of neuron morphology on network architecture

(A) We consider all neurons whose morphologies project into a brain volume of interest (black box). We differentiate between excitatory (EXC) and inhibitory (INH)

cells. For each neuron, we determine the boutons along its axon (presynaptic sites [PREs]), and the postsynaptic sites (POSTs) along its soma and dendrites.

(B) We divide the brain volume into small subvolumes, and determine the respective subvolumes in which the dendrite and axon projection patterns of any pair of

neurons overlap.

(C) We consider the total number of PREs and POSTs within each subvolume (i.e., packing density).

(D) We consider the number of neurons from which the PREs and POSTs originate (i.e., cellular diversity).

(E) Packing density and cellular diversity of the neuropil define the possible combinations by which the neurons could connect to one another. We allow the

boutons of EXC and INH neurons to target spines and somata/shafts, respectively.

(F) By determining all possible combinations across all subvolumes, we generate all networks that could emerge from the neurons’ axo-dendritic overlap.

(G) By assuming that all possible connections are equally likely, we calculate how likely each of the network configurations would appear in the absence of

synapse formation mechanisms that result in wiring specificity. This statistical approach allows us to analyze connectivity patterns that emerge irrespective of

which neurons whose axons and dendrites overlap are connected.

Article
ll

OPEN ACCESS
principle for only a small minority of the overlapping branch

pairs (<1%).

Most neurons contribute more than one pre- and/or postsyn-

aptic site to each subvolume (Figure 2B), which results in

network configurations where several synapses connect an

axon-dendrite pair (Figure 2C). An analysis of the ensemble re-

veals that in any network configuration, more than 1% of the

connected axon-dendrite pairs in any subvolume form clusters

of synapses with up to 5 connections—and with even more

connections in some of the subvolumes (Figure 2E). Further-
more, the axons and dendrites of neuron pairs typically overlap

in more than one subvolume (Figure 2F). The probability that

overlap predicts connectivity is already low in each subvolume.

The likelihood that network configurations occur in which

neuron pairs are connected in all of their overlap volumes—

and in particular that all of their overlapping pre- and postsyn-

aptic sites are connected—is hence infinitesimally small

(Figure 2G). Irrespective of the spatial resolution at which over-

lap is determined, neurons whose axons and dendrites overlap

will generally remain unconnected in any network configuration
Cell Reports 39, 110677, April 12, 2022 3



Figure 2. Neuron morphology translates into sparse connectivity

(A) Illustration of the anatomically detailed model of the rat barrel cortex. Here, we highlight the somata, dendrites and axons of three example neurons: a py-

ramidal neuron in layer 2 (L2PY; Cell i), a pyramidal tract neuron (L5PT; Cell j), and a corticocortical pyramidal neuron (L6CC; Cell k).

(B) Example subvolume in which the L2PY axon represents ten boutons (i.e., PREs). The L5PT dendrites represent 114 spines (i.e., POSTs). The number of

129,263 POSTs reflects all spines, and all postsynaptic sites on inhibitory somata and dendritic shafts in this subvolume.

(C) Probabilities that the L2PY axons forms none, one or more connections with the L5PT dendrites in this subvolume.

(D) Axon-dendrite pairs versus the number synapses that they represent for different spatial resolutions at which we determined axo-dendritic overlap. If axo-

dendritic overlap predicts connectivity, the two lines would match.

(E) Axon-dendrite pairs whose overlap yields none, one or more connections across all network configurations.

(F) The L2PY axon overlaps with the L5PT dendrites in 13 subvolumes.

(G) Number of overlap volumes for all neuron pairs versus connections between them; 100% indicates that two neurons are connected by as many synapses as

they have overlap volumes.

(H) Neuron pairs that overlap versus connected neurons for different spatial resolutions at which we determined axo-dendritic overlap.
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that emerges from the barrel cortex model (Figure 2H). Thus, by

shaping the packing density and cellular diversity of the neuro-

pil, morphology impacts how sparsely neurons connect to one

another, and how frequently clusters of synapses occur be-

tween them.
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Neuron morphology translates into nonrandom network
topology
Next, we test the impact of neuron morphology on higher-order

connectivity. For this purpose, we calculate the likelihoods for

the occurrences of all fifteen motifs by which three neurons in



Figure 3. Neuron morphology translates into nonrandom network topology

(A) Somata of example neurons (gray) whose axons overlap with the dendrites of at least one of the neurons from Figure 2A.

(B) Two network configurations for 50 neurons from (A) that we predict to occur with different likelihoods.

(C) Random network example derived from the same pairwise connection probability distribution that we used to generate the networks in (B). The number of

nodes and edges are identical to (B), but the occurrences (n) of motifs differ (e.g., motif 10 in [E]). One example for motif 10 is highlighted in black per network in

(B) and (C).

(D) Connection probability distribution for all pairs of neurons from (A).

(E) Ratios between motif occurrences in networks from the barrel cortex model versus random networks (1, equally abundant; >1, over-represented compared

with random networks; <1, under-represented).

(F) Deviations in the occurrences of motif 10 compared to random networks for different cell type-specific groupings (n = 220) versus the respective means and

CVs of the underlying connection probability distributions.

(G) The likelihoods to observe recurrent loops and feedforward chains between up to ten neurons in networks from the barrel cortex model versus in random

networks.
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the barrel cortex model can connect to one another (Figure 3A).

For example, the three neurons shown in Figure 2A will most

likely form the motif with a single unidirectional connection

(L2PY / L5PT), less likely motifs with one bidirectional
connection (L5PT )/ L6CC), and never motifs with more

than one bidirectional connection (i.e., the L5PT and L6CC axons

do not overlap with the L2PY dendrites). The motif that the three

neurons form differs across networks configurations (Figure 3B),
Cell Reports 39, 110677, April 12, 2022 5
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and the likelihood for the occurrence of each particular motif de-

pends on the neurons’ pairwise connection probabilities within

and across their respective overlap volumes (Figure S3). Here,

we compare the occurrences of motifs between neurons in the

barrel cortex model with those of randomly connected networks

that have the same number of neurons and connections (Fig-

ure 3C). An analysis of the ensemble reveals that, in any network

configuration, the occurrences of motifs deviate from those in

the random networks, even though both the barrel cortex model

and the random networks have the same pairwise connectivity

statistics (Figure 3D).

The degree to which motif occurrences differ from those in

random networks depends on how we group the neurons in

the barrel cortex model with respect to their soma location

within a particular layer or barrel column, cell types, specific in-

ter-somatic distances, or combinations thereof (Figure S4). For

example, motif 7 (a feedforward loop) occurs more frequently

in the network configurations that emerge from the barrel cortex

model than in random networks—i.e., it is over-represented (Fig-

ure 3E). In contrast, this motif is under-represented when we

consider only the subnetworks that the excitatory neurons

form in layer 5 (Figure 3E). These grouping-dependent

occurrences of motifs correlate with differences in the underlying

pairwise statistics. For example, motif 10 transitions from

over- to under-representation, depending on the mean connec-

tion probability within the group of neurons (Figure 3F). The

respective magnitude of over- and under-representation reflects

the coefficients of variation (CV) of connection probabilities (Fig-

ure 3F). These relationships indicate that the mean and CV (i.e.,

width) of connection probability distributions—subsequently

referred to as a network’s sparsity and heterogeneity—quantita-

tively and qualitatively impact the nonrandom topology of

neuronal networks. Beyond triplet motifs, recurrence character-

izes the topology of the barrel cortex networks, as over-repre-

sentation increases with the number of bidirectional connections

and with the number of neurons per motif (Figure 3G).

Conversely, the under-representation of feedforward motifs

increases with the number of neurons per motif. Thus, the

topology that emerges in networks from neuron morphology

generally deviates from those of random networks.

Three morphology-related factors translate into
network architecture
How is it possible that neuron morphology translates into

nonrandom network architectures? How can the degrees of

sparsity and heterogeneity in pairwise connectivity have such a

defining impact on the networks’ specific nonrandom topologi-

cal properties? To address these questions, we systematically

explore the mathematical basis that underlies the occurrences

of motifs. For this purpose, we consider the ensemble of config-

urations as a distribution of pairwise connection probabilities

that generates networks. If each connection is drawn indepen-

dently from any such generating distribution, motifs will occur

as expected for randomly connected networks—i.e., occur-

rences are independent from the network’s heterogeneity and

only reflect the mean of the underlying pairwise statistics

(Figure S5A; Equation 4 in the STAR Methods). Thus, our

observations of nonrandom occurrences of motifs, and their
6 Cell Reports 39, 110677, April 12, 2022
dependencies on network heterogeneity, cannot be consistent

with the assumption that connection probabilities are indepen-

dent of one another. Instead, only correlations in pairwise

connectivity could explain our observations (Figure S5B).

How do the correlations affect the occurrences of motifs? To

address this question, we use a mathematical model that

assumes that correlations and heterogeneity in connectivity

can be expressed by a single parameter, l (Macke et al.,

2011). We provide a comprehensive description of the

mathematical model in the STAR Methods. The mathematical

model yields motif occurrences that match those in random

networks only when correlations are absent (i.e., l = 0;

Equations 5 and 6 in the STARMethods). In turn, in the presence

of correlations, the mathematical model allows us to explore

how sparsity and heterogeneity in connectivity affect in principle

motif occurrences. For example, in sparsely connected net-

works (e.g., mean connection probability of 10%) feedforward

motifs become increasingly under-represented with increasing

heterogeneity (Figure S5C). Conversely, in densely connected

networks (e.g., a mean of 90%) suchmotifs become increasingly

over-represented with increasing heterogeneity. Recurrent

loops are always over-represented in the presence of correla-

tions, and this over-representation increases the sparser and

the more heterogeneous a network is connected (Figure S5C).

We test whether correlations, in conjunction with sparsity and

heterogeneity, can explain the specific nonrandom network

configurations that emerge from the barrel cortex model. We

illustrate these quantifications for excitatory neurons in layer 5

(Figure 4A). Approximately 80% of these neurons represent

intratelencephalic pyramidal neurons (L5ITs), L5PTs, or L6CCs

(Figure 4B). We, therefore, analyze the pairwise and higher-order

statistics with respect to these cell types (Figure 4C). Although

neuron somata from all of these cell types intermingle, the

shapes of the respective connection probability distributions

differ substantially. For example, L5ITs connect more densely

and less heterogeneously to L5PTs than L5PTs connect to one

another (Figure 4D). Within the population of L5PTs, the shapes

of connection probability distributions differ substantially,

depending on how far apart their somata are (Figure 4D). Thus,

in any network configuration, the degrees of sparsity and

heterogeneity in connectivity will reflect the locations of the

neurons’ somata and their respective cell types (Figure S6A).

We find substantial correlations in pairwise connectivity. For

example, L5PTs receive more connections from one another

the more connections they receive from L6CCs (Figure 4E).

These in-degree correlations emerge when the axons of two

neurons jointly overlap with the dendrites of another neuron.

The greater the number of joint overlap volumes—and of

presynaptic sites therein—the greater the probability that both

axons connect to the dendrites of the same neuron. An analysis

of the ensemble reveals that, in any network configuration,

correlations in connectivity are present and that the strengths

of these correlations reflect how similar the neurons’ projection

patterns are (Figure S6B)—i.e., the more similar the projection

patterns, the more similar are the overlap patterns. For example,

despite substantial differences between L5PTs and L6CCs, the

axons of both populations predominantly project to the deep

layers, where they span horizontally across several barrel



Figure 4. Three morphology-related factors translate into network architecture

(A) We illustrate the impact of neuron morphology on network architecture for EXC neurons in layer 5 of the C2 barrel column.

(B) Zoom-in shows somata colored by their respective cell type.

(C) Part of the matrix representation of the networks from Figure S3A that represents the neurons shown in (B).

(D) Distributions of connection probabilities from the matrix in (C) for different cell type combinations. (Bottom) Connection probability distributions between

L5PTs for different inter-somatic distances.

(E) In-degree distributions derived from the matrix in (C). The numbers of incoming connections that L5PTs receive from one another correlates with those they

receive from L6CCs.

(F) Motif occurrences in networks from the barrel cortex model versus those in random networks depend on the in-degree correlation coefficients, the means and

CVs of the corresponding connection probability distributions. Circles represent more than 200 groupings of neurons with different cell type combinations (e.g.,

those in [D]).

(G) Nonrandom motif occurrences for the groupings in (F) are consistent with the mathematical model.
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columns (Narayanan et al., 2015). In contrast, L5IT axons

predominately project to the upper layers and remain confined

to a barrel column in the deep layers. As a result, in-degree

correlations are weaker between L5ITs and the other two cell

types (Figure S6C).

We generalize our observations to all neurons in the barrel

cortex model. For this purpose, we quantify the respective

means, CVs, and correlations of connection probability distribu-

tions for more than 200 groupings that represent populations of

different cell type combinations (Figure 4F). For any of the

groupings, correlations are present and motif occurrences

deviate from those in random networks. The sparser and the

more heterogeneous neurons connect to one another within a

group, the more over-represented are recurrent connections

between them. Conversely, the more densely neurons connect
to one another, the more under-represented are feedforward

connections. These relationships are consistent with the respec-

tive predictions of themathematical model (Figure 4G). Thus, the

nonrandom architectures of neuronal networks reflect the

specific morphological properties of their constituents because

of the impact of morphology on correlations, sparsity, and

heterogeneity in pairwise connectivity.

Principles linking neuron morphology to network
architecture
We reveal four principles by which the neurons’ morphologies

impact network architectures. First, the vast majority of neurons

whose axons and dendrites overlap remain unconnected. As a

result, the more axon-dendrite branch pairs are packed into

the neuropil relative to the number of synapses they can form,
Cell Reports 39, 110677, April 12, 2022 7



Figure 5. Principles linking neuron

morphology to network architecture

(A) The packing density of the neuropil translates

into the means of connection probability distribu-

tions, and thereby defines a networks’ sparsity.

(B) The cellular diversity translates into the widths

of connection probability distributions, and

thereby defines a network’s heterogeneity.

(C) Similarities in dendrite and axon projection

patterns translate into similar overlap patterns,

which result in correlations of connection proba-

bility and degree distributions.

(D) In the presence of correlations, the degrees of

sparsity and heterogeneity define a network’s

specific nonrandom topology. Feedforward motifs

become increasingly over-represented the denser

and the more homogeneously neurons are con-

nected (i.e., low packing density and low cellular

diversity). Conversely, recurrent motifs become

increasingly over-represented the sparser and the

more heterogeneously neurons are connected.
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the smaller the probability that their respective pre- and postsyn-

aptic sites connect to one another. Thus, the packing density of

the neuropil translates into the means of connection probability

distributions, and thereby defines a networks’ sparsity (Fig-

ure 5A). Second, the greater the cellular diversity, the broader

are the distributions of connection probabilities. Thus, cellular

diversity translates into the CV of connection probability

distributions, and thereby defines a network’s heterogeneity

(Figure 5B). Third, the more similar the projection patterns of

the neurons are, the more similar are their respective overlap

patterns across subvolumes. Thereby, similarities in the neu-

rons’ projection patterns translate into correlations between

connection probability and degree distributions (Figure 5C).

Fourth, because of these correlations, the degrees of sparsity

and heterogeneity define a network’s specific nonrandom

topology. High packing density and high cellular diversity, for

example, as in the cerebral cortex, thereby yield recurrent

network architectures (Figure 5D). Tissue with a low packing

density and a low cellular diversity yields feedforward

architectures.

Neuron morphology predicts empirically observed
wiring specificity
How strong is the impact of neuron morphology on network

architecture? Here we can address this question, because the

ensemble of network configurations provides a null hypothesis

for testing to what degree empirically observed wiring specificity

requires specific synapse formation mechanisms. For this

purpose, we compare the connectivity patterns predicted here

with a rich body of literature that represents several decades of

connectivity measurements by different laboratories. First, we
8 Cell Reports 39, 110677, April 12, 2022
test the predicted relationship between

packing density and sparsity in connec-

tivity. We generate 500,000 mm3 subvo-

lumes in layer 4 of the barrel cortex model

(Figure S2C), analogous to dense recon-

structions in the mouse barrel cortex
(Motta et al., 2019). On average, these subvolumes comprise

more than 108 axon-dendrite pairs. The vast majority of these

branch pairs remain unconnected in any network configuration

(Figure 6A), while approximately 105 are connected by a single

synapse, approximately 4,000 by two synapses, approximately

150 by three synapses, and approximately 20 by four or more

synapses (Figure 6B). These predictions for both the packing

density (Figure S2D) and the resulting connectivity patterns are

consistent with the empirical observations (Motta et al., 2019).

Second, we test the predicted relationship between cellular

diversity and heterogeneity in connectivity. For this purpose,

we group neurons analogous to measurements that sampled

connectivity between neuron pairs depending on their soma

locations within a particular layer, cell types, inter-somatic dis-

tances, or combinations thereof (Figure 6C). In total, we predict

the pairwise connectivity for 89 such samplings that reflect

different locations and/or cell types and compare those with

the respective empirical data reported across a set of 29 studies

(Tables S1, S2, and S3). The predicted connection probabilities

correlate significantly with the empirical data (R = 0.75;

p < 10�16). Approximately two-thirds of the empirical connectiv-

ity values deviate from the prediction by less than half a standard

deviation of the respective connection probability distribution,

94% by less than one standard deviation (Figure 6D). Random

permutations of the predicted connection probabilities yield cor-

relations with the empirical data that are not significant (R = 0.00

± 0.11).

Finally, we test the predicted nonrandom occurrences of

motifs. The occurrences of motifs and their respective deviations

from a random network were systematically assessed for triplets

of L5PTs (Song et al., 2005). The barrel cortex model



Figure 6. Predicted versus empirical connectivity data

(A) Predicted occurrences of unconnected branch pairs per 500,000 mm3 large subvolumes in layer 4 of the rat barrel cortex model (n = 252).

(B) Occurrences of branch pairs connected by one or more synapses (min/median/max) for the same subvolumes as in (A) match with empirical data frommouse

barrel cortex (1 (Motta et al., 2019)).

(C) Predicted connection probabilities match those of four example studies (2 [Bruno and Sakmann, 2006]; 3 [Sun et al., 2006]; 4 [Yoshimura et al., 2005]; 5

[Perin et al., 2011]). (Left) Mean ± STD. (Right) Box plots represent median, and 25th and 75th percentiles.

(D) Empirical connection probabilities for 89 layer and/or cell type groupings versus the respective means predicted here (Table S1). Gray shading represents

95% prediction interval. Asterisks denote inconsistencies with empirical data.

(E) Predicted nonrandom motif occurrences between L5PTs (mean) match with the empirical data (6 [Song et al., 2005]). As reported by Song et al. (2005), we

normalized the triplet ratios by the predicted occurrences of doubletmotifs (inset). The Y axis in log scale. Error bars for the predictions represent the range across

models.

(F) Over-representation of motifs between eight L5PTs increases with the number of connected neurons empirically (5 [Perin et al., 2011]) and in the barrel cortex

model.
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predicts nonrandom motif occurrences for this cell type that are

consistent with these empirical data, with the notable exception

of the feedforward loop and the recurrent feedback motifs (Fig-

ure 6E). Moreover, probing the occurrences of motifs between

up to eight L5PTs revealed that, independent of their particular

topology, motifs become increasingly over-represented with
increasing numbers of connected neurons (Perin et al., 2011).

This relationship is qualitatively consistent with our predictions

(Figure 6F). Thus, the barrel cortex model predicts the observed

occurrences of clusters of synapses, layer-, cell type- and dis-

tance-specific connectivity, and over- or under-representation

of motifs. Consequently, such wiring specificity can emerge in
Cell Reports 39, 110677, April 12, 2022 9



Figure 7. Disentangling sources of wiring specificity in dense connectomics data

(A) Current stage of the dense electron microscopy reconstruction of one cubic millimeter of human cortex, as recently reported (Shapson-Coe et al., 2021). We

colored the reconstructed neuron morphologies by their laminar soma locations and putative morphological cell types (analogous to Figure S1). Zoom-in shows

three examples of layer 5 pyramidal neurons (L5PY). The electron microscopy image shows one synapse between the example neurons. We split all re-

constructed synapses in this dataset into presynaptic (i.e., boutons) and postsynaptic sites (e.g., spines).

(B) We divide the dense dataset into small subvolumes, count the pre- and postsynaptic sites along axons and dendrites therein, and generate the different

network configurations, which can account for them.We illustrate the resulting networks for the example neurons from (A). Arrows denote the likelihoods that e.g.,

Cell i is connected by at least one synapse to the dendrites of Cell j within one of their overlap volumes (i.e., in 10% of the network configurations).

(C) Predicted nonrandom motif occurrences between the 200 most connected neurons per layer match with the dense reconstructions. Error bars represent

standard deviations across layers. Note: we did not observe motif 1 in the dense reconstruction of the inspected samples.

(D) Predicted nonrandom occurrences of triplet motifs for the 50, 100, 150, and 200 most connected pyramidal neurons per layer are consistent with the dense

reconstructions (left), except for the feedback motif (right).
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cortical networks from the neurons’ morphological properties,

even if synapse formation mechanisms that introduce wiring

specificity were absent.

Outlook: Disentangling sources of wiring specificity in
dense connectomics data
We apply our statistical approach to an electron microscopy

reconstruction of 1 mm3 of the human cortex (Shapson-Coe

et al., 2021). We analyze this petascale connectomics dataset

in its preliminary form, which, however, reflects the current

state-of-the-art for dense reconstructions of cortical tissue. We

divide the dataset into small subvolumes and split all synaptic

connections therein into pre- and postsynaptic sites along the

axons and dendrites, respectively (Figure 7A). Analogous to

the analysis of our barrel cortex model, we derive all network

configurations that can emerge from the hence quantified pro-

jection patterns, packing density, and cellular diversity of the

neuropil and calculate how likely these configurations are to

appear in the absence of synapse formation mechanisms that

introduce wiring specificity (Figure 7B). The resulting ensemble

of networks for this fragment of human cortex predicts
10 Cell Reports 39, 110677, April 12, 2022
nonrandom topologies that are consistent with the current stage

of reconstruction (Figure 7C). Interestingly, the predicted occur-

rences of the feedback motif deviate from the reconstruction for

some of the layer-specific groupings of pyramidal neurons

(Figure 7D). These observations illustrate that our statistical

approach sets the stage to disentangle whether wiring specificity

in dense connectomics data could reflect the specific

morphologies of the neurons (i.e., consistent with the prediction),

or specific synapse formation mechanisms (i.e., inconsistent

with the prediction).

DISCUSSION

We use a statistical approach to reveal how the neurons’

morphologies impact the architecture of the networks they

form. We consider the overlap between dendritic and axonal

projections patterns, as well as the packing density and cellular

of diversity of the neuropil. We find four principles by which these

three morphology-related factors translate into nonrandom

pairwise and higher-order connectivity patterns. Such wiring

specificity is considered to reflect specific synapse formation
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mechanisms (e.g., molecular recognition of cell type and activ-

ity). This interpretation is due to the assumption that the impact

of neuron morphology on connectivity can be assessed by

testing Peters’ rule (Braitenberg and Sch€uz, 1991). According

to this hypothesis, axons form synaptic connections randomly

wherever they get in close proximity with a dendrite (Peters

and Feldman, 1976). Axo-dendritic overlap would hence not

only be necessary—as assumed here—but sufficient to account

for connectivity. Consequently, Peters’ rule can be simply

restated as ‘‘overlap predicts connectivity.’’ However, here we

demonstrate that axo-dendritic overlap could predict connectiv-

ity in principle for only a very small minority of the branch pairs.

Thus, testing of Peters’ rule is not equivalent to testing the impact

of neuron morphology on network architecture. Consequently,

observations that violate Peters’ rule do not provide sufficient

evidence to conclude that such wiring specificity reflects

specific synapse formation mechanisms. Our findings now set

the stage to disentangle morphological from synaptic origins of

wiring specificity by applying our statistical approach to dense

reconstructions of sufficiently large brain volumes (Figure 7).

We predict connectivity patterns from subcellular to network

scales that are in agreement with those observed empirically.

This consistency raises the question, which synapse formation

mechanisms could implement such strong relationships

between neuron morphology and network architecture. Our

assumption that all possible connections within a subvolume of

the neuropil are equally likely is consistent with nonspecific syn-

apse formation mechanisms, for example, that axons compete

with one another to connect to the available postsynaptic sites.

Such mechanisms represent a prominent wiring strategy during

the development of the peripheral (Lanuza et al., 2018; Turney

and Lichtman, 2012) and central nervous systems (Penn et al.,

1998). It is hence tempting to speculate that neuron morphology

development, in conjunction with competitive synapse formation

mechanisms, establishes a scaffolding of wiring specificity in the

architectures of cortical networks (Zador, 2019). Consistent with

theoretical considerations (Koulakov et al., 2021), we therefore

propose that the emergence of wiring specificity via neuron

morphology development may reflect an efficient evolutionary

strategy tomaintain cortical network architectures across genera-

tions while providing sufficient flexibility for invading new ecolog-

ical niches (Catania, 2017).

The impact of neuron morphology on cortical networks might

diminish throughout life. Consistencywith the empirical data could

thereby reflect the fact that connectivitymeasurements in the liter-

ature originated largely fromyoung animals. This possibility is sup-

ported by dense reconstructions of the nematode C. elegans,

which recently revealed that the neuropil structure of its nervous

systemprovidesaconstantscaffoldingonwhichconnectivity is re-

modeled from birth to adulthood (Cook et al., 2020). Interestingly,

some morphologically determined connectivity patterns were

maintained throughout life. This may also apply to the cerebral

cortex, as its proper function is critically linked to two network

properties that we find are strongly impacted bymorphology: het-

erogeneity and correlations in connectivity (Landau et al., 2016).

Consequently, to ensure the robustness of cortical dynamics, ho-

meostaticmechanismsmaymaintainmorphologically determined

wiring specificity, despite the constant remodeling of cortical net-
works. Our findings and statistical approach will allow testing

whether the impact of neuron morphology on cortical network ar-

chitecture decreases or is maintained during maturation.

Limitations of the study
We emphasize that our findings do not imply that the impact of

specific synapse formation mechanisms on wiring specificity is

negligible. For example, the respective occurrences of motifs 7

and 9 in the barrel cortex (Figure 6E), and of motif 11 in the human

cortex (Figure 7D) cannot be explained by the morphological

propertiesof theneurons.Moreover,wedonotevaluate thespatial

distributions of synaptic connections along the entire dendrite

morphologies of the neurons. Recent work demonstrated that

axons can target specific dendritic subdomains of particular cell

types (Guest et al., 2022; Karimi et al., 2020)—observations that

are unlikely to emerge from neuron morphology. Finally, we do

not systematically evaluate the connectivity patterns for different

inhibitory cell types. Depending on their cell type, axons of inhibi-

tory neurons can preferentially target specific other cell types

and specific subcellular compartments (reviewed in Kubota,

2014). Testing the degrees towhich themorphologies of inhibitory

neurons impact network architectures would hence require incor-

porating the target specificity of different inhibitory cell types into

our statistical approach when generating the network configura-

tions. For now, however, the relationships between morphology

and target specificity of inhibitory neurons are not fully resolved.

Thus, here we limit our analysis to excitatory intracortical and

thalamocortical connections for which empirical connectivity

data is available. Online at https://cortexinsilico.zib.de/, we pro-

vide access to the predicted connectivity patterns between the

neurons in all layers of the barrel cortex (e.g., motif occurrences),

which will allow testing their significance once the respective

empirical connectivity data becomes available.
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d All original code is publicly available at GitHub: https://github.com/zibneuro/udvary-et-al-2022.
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METHOD DETAILS

Structural model of rat barrel cortex
NeuroNet

We reverse engineered the structural composition of the neuropil for the rat barrel cortex by using NeuroNet, a custom-designed

extension package for Amira software (FEI). NeuroNet was described in detail previously (Egger et al., 2014). NeuroNet requires

the following anatomical data as input: (i) a reconstruction of the three-dimensional (3D) geometry and cytoarchitecture for the

cortical volume of interest, (ii) a spatially dense reconstruction of the distributions of excitatory (EXC) and inhibitory (INH) neuron

somata within the volume, (iii) samples of in vivo labeled dendrite and axon reconstructions that represent neurons from all layers

and for all major morphological cell types (Figure S1A), and (iv) cell type- and target layer-specific measurements for the densities

of pre- and postsynaptic sites along these axons and dendrites, respectively. The output by NeuroNet is a digital model of the cortical

volume (Egger et al., 2020), where each soma is represented by one axon and dendrite from the sample of morphologies. The model

hence provides quantitative estimates for the spatial distributions of all neurons, and their dendrites and axons—including the

distributions of pre- and postsynaptic sites along them (Narayanan et al., 2017).
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Anatomical input data

All anatomical data used here as input for NeuroNet was acquired in Wistar rats, primarily during the fifth postnatal week after the

critical periods of neuron morphology development and has been reported previously. To capture the characteristic geometrical, cy-

toarchitectonic, and cellular organization of the rat barrel cortex in the model, we reconstructed precise 3D maps of cortical barrel

columns with surface reconstructions of the pia and white matter (Egger et al., 2012), and quantified the locations of all EXC and INH

neuron somata in the rat barrel cortex and in VPM thalamus (Meyer et al., 2013). To capture the cell type-specific morphological or-

ganization of the rat barrel cortex in the model, we reconstructed a sample of in vivo-labeled EXC neuron morphologies (De Kock

et al., 2007; Narayanan et al., 2015; Oberlaender et al., 2012a) and the intracortical part of in vivo-labeled VPM axon morphologies

(Oberlaender et al., 2012b). NeuroNet replaced each neuron of the reconstructed distribution of EXC somata with amorphology from

this sample of reconstructions. The neurons’ locations in the model were on average within ±119 mm of their reconstructed 3D soma

positions within the barrel cortex (Egger et al., 2012). We placed as many thalamocortical axons as the average measured number of

neurons per respective VPM barreloid. To account for EXC connections onto INH neurons, we incorporated reconstructions of INH

neurons into the model (Arzt et al., 2018; Helmstaedter et al., 2009; Koelbl et al., 2015; Egger et al., 2015). For in vitro-labeled INH

neurons, morphologies were extrapolated by assuming radial symmetry. Connections from or onto INH neurons were hence not

systematically analyzed. We derived the number of presynaptic sites (i.e., axonal boutons) by multiplying the axon length that

each neuron contributes to a particular subvolume with the number of boutons per length (Egger et al., 2014), as measured for all

EXC cell types and layer 1 INH neurons, and depending on the axons’ target layer (Egger et al., 2015; Narayanan et al., 2015). For

all remaining INH neurons, we set the density to 0.2 boutons per mm axon as reported elsewhere (Karube et al., 2004; Markram

et al., 2004; Wang et al., 2002). Based on the resulting density distribution of boutons along the cortical depth, we scaled the total

number of postsynaptic sites along the dendrites. More specifically, we performed the scaling separately for the targets of boutons

from EXC and INH axons. First, for targets of EXC boutons, we derived the number of postsynaptic sites along EXC dendrites (i.e.,

spines) by assuming that spine densities are proportional to dendritic length. For the respective number of postsynaptic sites along

INH dendrites and somata, we assumed proportionality to their respective surface areas. The derived density of postsynaptic sites for

EXC neurons ranged from 1.04 to 1.68 spines per mm dendritic length, consistent with empirical spine density measurements

(Larkman, 1991; Kawaguchi et al., 2006). The derived density of postsynaptic sites for INH neurons was 0.74 per mm2 of dendritic

or somatic surface, consistent with empirical synapse density measurements on INH somata (Keller and White, 1987; Ahmed

et al., 1997). Second, for targets of INH boutons, we derived the number of postsynaptic sites along both EXC and INH dendrites

and somata by assuming proportionality to their respective surface areas. The derived density of postsynaptic sites for EXC and

INH neurons was 0.06 per mm2 of dendritic and somatic surface, consistent with empirical data (Ahmed et al., 1997; Keller andWhite,

1987; White et al., 1984).

Validation of the barrel cortex model

We tested how representative the 3Dprojection patternsof our sample of EXCaxonanddendritemorphologies is. First,we aligned the

dendrite morphologies of each cell type by their lateral soma position and calculated dendrite innervation volumes at a 50 mm reso-

lution for an increasing sample of morphologies (Figure S1B). For each cell type and sample size, we calculated the differences be-

tween the respectively determined innervation volumes and that innervated by all morphologies for this type. Second, we

determined the respective dendrite length contribution per subvolume of each combination of morphologies. For each sample size

of morphologies, we calculated the CV of the dendrite length per subvolume across all possible combinations (Figures S1C and

S1D). We repeated the same analysis for axons without alignment by somata. We tested whether the barrel cortex model provides

realistic estimates for the packing density and cellular diversity of the neuropil. We, therefore, compared the model prediction with

empirical data (Braitenberg and Sch€uz, 1998; Motta et al., 2019; Santuy et al., 2018; Chandrasekaran et al., 2015) (Figures S2B–

S2E). To test the robustness of the packing density and cellular diversity, we created more than 30,000 barrel cortex models with

different anatomical data as input. We then quantified the variability across models for 512 (50 mm)3 large subvolumes within the

C2 barrel column—i.e., axonal and dendritic path length, number of branches, number of branches that remain unconnected to a

soma within the same subvolume, number of boutons, number of contributing cells and cell types, and path length to the soma

from each branch (Figures S2D–S2F). First, we assessed how the limited sample size of morphology reconstructions affects these

quantities. We generated barrel cortex models where only one morphology per cell type, two morphologies, and so on were used

as input. Starting with onemorphology per type, we used a random sample of 500 combinations ofmorphologies as input to generate

500 models. All models were based on the same distribution of neuron somata (i.e., average across four barrel cortices (Meyer et al.,

2013)). For each subvolume,wedetermined theCVof eachquantity across the 500models.We then calculated themedianCVof each

quantity across all subvolumes (Figure S2G).We repeated this analysis for twomorphologies per cell type and so on until themaximal

sample size was reached, respectively. Second, we assessed how the variability of soma distributions across animals affects these

quantities. We repeated the analysis with models that were based on each of the four measured soma distributions, respectively

(Meyer et al., 2013). We again calculated the median CV of each quantity across all subvolumes (Figure S2G).

Generation of networks
First, we calculated the dense structural overlap (DSO) as the product of the numbers of pre- and postsynaptic sites that neurons i

and j contribute to a subvolume x, relative to the total number of postsynaptic sites contributed by all neurons in the barrel cortex

model, here indexed with N.
e2 Cell Reports 39, 110677, April 12, 2022



Article
ll

OPEN ACCESS
DSOði;j;xÞ = PREði;xÞ,
POSTðj;xÞP
NPOSTðN;xÞ

(Equation 1)

Based on this quantity, we assume that any presynaptic site has equal probability of forming a connection with any of the allowed

postsynaptic sites within the same subvolume. The probability p for the presence of n connections between neurons i and j within a

subvolume x across all networks is therefore given by a Poisson distribution with parameter n:

pði;j;x;nÞ =
DSOði;j;xÞ

n

n!
,e�DSOði;j;xÞ (Equation 2)

We assume that the formation of connections does not affect synapse formation elsewhere. Thus, the probability P that neurons i

and j are connected by at least one synapse across all networks is given by:

Pði;jÞ = 1� e
�
P
k

DSOði;j;xk Þ
= 1�

Y
k

e
�DSOði;j;xk Þ ; (Equation 3)

where the index k runs over all subvolumes in which neurons i and j overlap. Parameterizing the subvolumes of the barrel cortex

model by the quantity DSO, followed by application of Equations 2 and 3, yielded the networks that we analyzed here. We analyzed

networks generated for cubic subvolumes with 50 mm edge length unless stated otherwise (e.g., Figure 2).

Mathematical model for networks with correlations
Weconsider our ensemble of networks as a distribution of pairwise connection probabilities pi that generates network configurations.

Suppose that K connections are drawn from any such generating distributionQðpjm;sÞ, where m and s represent themean (i.e., spar-

sity) and variance (i.e., heterogeneity) of the pairwise connectivity in the corresponding networks. If each of theK connections is drawn

independently, the probability of observing for example recurrent loops (motif 1) is accordingly the expected value of Qðpjm;sÞ:

Pðmotif 1Þ = EQ

 YK
i = 1

pi

!
=
YK
i = 1

EQðpiÞ=mK (Equation 4)

Thus, when connection probabilities are independent of one another, motifs will occur as expected for randomly connected

networks—i.e., occurrences are independent from the network’s heterogeneity and only reflect the mean of the underlying pairwise

statistics. Consequently, our observations of nonrandom occurrences of motifs, and their dependencies on network heterogeneity,

cannot be consistent with the assumption that connection probabilities are independent of one another. Instead, only correlations in

the networks could explain our observations. We therefore investigated how the presence of correlations affects the occurrences of

motifs. For this purpose, we developed a mathematical model for correlated connectivity that is closely related to the one studied in

(Macke et al., 2011). In the following, Nðm; lÞ denotes a Gaussian distribution with mean m and variance l, 4ðt;m; lÞ denote the

respective Gaussian probability density function evaluated at t, Fðs;m; lÞ denotes the respective cumulative probability density

function evaluated at s, and the complementary cumulative probability density function is defined by Lðs; m; lÞ = 1� Fðs;m; lÞ.
For simplicity, the mathematical model assumes that whether there is an i-th edge between two nodes (denoted by Xi = 1, otherwise

Xi = 0) is the result of a combination of only one ‘‘private’’ source Ti, and one ‘‘shared’’ source S. The larger the shared source S is

relative to the private one Ti, the more correlated the resultant connection probabilities are. Here we found that such shared sources

could originate from similarities in the neurons’ locations andmorphologies. Themore similar the dendrite or axon projection patterns

of neurons are, the more similar are their respective contributions to the structural composition of the neuropil across subvolumes,

which leads to correlations between connection probability and degree distributions. The mathematical model could be easily

generalized by incorporating more than one shared source (e.g., one for each cell type combination). The mathematical model

has two parameters: l, bounded between 0 and 1, and representing the magnitude of the shared source, and thus the degree of

correlation in the sources. As we will demonstrate in the following, l also determines the heterogeneity of connection

probabilities—the larger l is the more heterogeneous are the connection probabilities. The parameter g represents the degree of

connectivity—the greater g is the higher are the connection probabilities. We define that the i-th edge exists (i.e., Xi = 1) whenever

the joint input of Ti and S, denoted by Zi, is larger than 0:

Xi = 1 whenever Zi>0

where

Zi = g+
ffiffiffi
l

p
S+

ffiffiffi
h

p
Ti

where

h= 1� l; S � Nð0; 1Þ; Ti � Nð0; 1Þ

Zi � Nðg; h + lÞ = Nðg; 1Þ
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Thus, covðZi;ZjÞ = l. If l = 1, Xi is only determined by the shared sourceS, while if l = 0, Xi is only determined by the private source

Ti. Given this mathematical model, the connection probability pi for each edge Xi is given by:

piðSÞ=PðXi = 1jSÞ= L
�
0; g+

ffiffiffi
l

p
S; h

�
And we likewise get

m=EsðpiÞ= Lð0; g; 1Þ
s2 =VarsðpiÞ

=

ZN
�N

PðXi = 1jsÞ24ðs; 0; 1Þds� m2

=

ZN
�N

L
�
0; g+

ffiffiffi
l

p
s; h

�2
4ðs;0;1Þds� m2

Deriving the covariance between any two connections Xi and Xj yields:

covðXi; XjÞ=EðXi; XjÞ � m2 =PðXi = Xj = 1Þ � m2

=

ZN
�N

PðXi = 1jsÞPðXj = 1
��sÞ4ðs;0;1Þds� m2

=

ZN
�N

L
�
0; g+

ffiffiffi
l

p
s; h

�2
4ðs; 0; 1Þds� m2

=VarðpiÞ
Thus, in the mathematical model the covariance of the connections is equal to the variance of connection probabilities—the more

strongly the connection probabilities vary, the more strongly the connections themselves are correlated. Hence, the parameter l

represents a measure of both, the degree of correlation and heterogeneity. To assess the impact of l and the mean connection

probability m onto motif occurrences and deviations, the probability that k out of K connections of a motif are realized is given by:

PðjXj = kÞ =
ZN
�N

�
K
k

�
L
�
0; g+

ffiffiffi
l

p
s; h

�k
F
�
0; g+

ffiffiffi
l

p
s; h

�K�k

4ðs; 0; 1Þds (Equation 5)

The probability of observing recurrent loops (K = k) is accordingly:

Pðmotif 1Þ =
ZN
�N

L
�
0; g+

ffiffiffi
l

p
S; 1� l

�K
4ðs; 0; 1Þds /

l= 0 yields
Lð0; g; 1ÞK =mK (Equation 6)

This mathematical model was implemented as a numerical simulation in Matlab. We iterated over 250 g-values ranging from�2 to

2 and 250 l-values ranging from 0 to 1. Per combination of g and l values, 10 trials, each with 100,000 random samples, were gener-

ated. For each trial, the mean and variance across the connection probabilities pi (i.e., m and s2), the probability of each triplet motif

PðjXj = kÞ with K = 6 (i.e., maximal number of edges in a triplet), and the respective probability expected in random network based

solely on m was calculated.

The details of the mathematical model for one trial are below.
Algorithm 1. Mathematical model of correlated connectivity

Input: simulator with degree of correlations and heterogeneity l and degree of connectivity g randomly initialize shared source S � Nð0; 1Þ.
h : = 1� l

pi : = Lð0;g +
ffiffiffi
l

p
S; hÞ // pi is a vector of connection probabilities

m : = EðpiÞ // E denotes the expected value

s2 : = VarðpiÞ // Var denotes the variance

K : = 6 // maximal number of edges in a triplet

for k = 0 to K do

PðkÞ : =

�
K
k

�
Eðpk

i ð1� piÞK�kÞ // probability of triplet motif with k edges

PrandomðkÞ : =

�
K
k

�
mkð1� mÞK�k // probability of triplet motif with k edges in random network

return P, Prandom, m, s
2
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The deviation of motif occurrences from a random network of each triplet motif was the ratio between the means of the motif

probabilities across all trials. The deviations were mapped on a grid spanned by 20 m-values (i.e., sparsity) and 20 l-values (i.e.,

correlations and heterogeneity) and visualized by a log-space color map (Figure S5C). Each of the 220 cell type-specific triplet

combinations was mapped into the grid space (Figure 4G). Specifically, we inferred for each combination its respective l-value

based on the variance and mean of the connection probabilities of each combination (Figure 4F) and a lookup table of m, s2, and

l-values as determined by the numerical simulation.

QUANTIFICATION AND STATISTICAL ANALYSIS

We used custom-written routines in C++, Python, or MATLAB 2020b software (Mathworks, Natick, MA) for analysis and Amira

software for visualization. Boxplots were generated with the Matlab built-ins boxplot or boxchart where the bottom and top of the

box represents the 25th and 75th percentiles, and the line within the box themedian. The lines extend to the adjacent values. Outliers

are all values more than 1.5 times the interquartile range away from the top or bottom of the box.

Connectivity analyses in the barrel cortex model
We restricted our analysis to layers 2 to 6 within the C2 barrel column. Within that volume, we calculated the number of boutons and

branch pairs that form zero to eight or more synapses per (50 mm)3 large subvolumes (n = 512). We repeated this analysis for 512

subvolumes with 1, 5, 10, and 25 mm edge lengths and for 64 subvolumes with 100 mm edge length. At the 1 mm edge length, we

excluded 229 subvolumes where either no axon or no dendrite were present. At the cellular level, we restricted our analysis to a

combination of approximately 400 million neuron pairs. For each pair, we determined the number of (50 mm)3 large subvolumes

with axo-dendritic overlap, referred to as noverlap. We then calculated in how many networks the pair forms zero to noverlap
synapses across all subvolumes. The resulting occurrences represent an upper bound since we constrained the overall number

of connections and not the number of connections per subvolume. We mapped the number of connections per pair on bins of

1% width ranging from 0% (no connection between pair) to 100% (as many connections as noverlap). Finally, we determined the

average number of occurrences across all pairs per bin. The resulting profile was smoothed with a moving median for visualization

purposes.We determined howmany of approximately 400million pairs overlap at 1, 5, 10, 25, and 100 mmedge length and how often

those were connected in the barrel cortex model.

We used the Matlab built-in digraph to illustrate network configurations for 50 neurons as a graph. The edges between the neurons

were realized based on their predicted connection probability. We constrained each configuration to have the same number of edges.

We generated the random network example by randomly assigning the same number of edges to 50 neurons. To analyze network to-

pologies, we calculated the occurrence probability of each of the 15 motifs for a set of 8 million randomly selected neuron triplets, with

each neuron belonging to a particular neuron population (e.g., neurons were grouped by their cell type or soma position in a layer). We

calculated the mean probability of the occurrences for each motif as predicted for the barrel cortex model and compared it with those

expected in a random network. First, we calculated the mean connection probabilities for each of the six edges between all of the

sampled neurons. Second, weused these sixmean connection probabilities to calculate the occurrenceprobability of eachmotif. Third,

we divided the predicted motif probabilities by their respective expected probabilities in the random network. We calculated the devi-

ation of motif occurrences of all 15 motifs for all 220 cell type-specific triplet combinations. For each triplet combination, we calculated

themean and CV of their connection probability distribution across all six edges. For triplets with neurons from at least two different cell

types (n = 210), we also calculated the mean across all in-degree correlation coefficients involving these cell types. We extended our

analysis to motifs between more than three neurons. We computed the probabilities of motif 1 (recurrent loop) and 13 (feedforward

chain) for up to 10 neurons. For this purpose, we randomly sampled sets of neurons per motif size (10 million for each motif) from

the barrel cortex model (i.e., 3 to 10) and computed the occurrence probabilities, respectively. We then compared the respective prob-

abilities with those computed in random networks based on the mean connection probability across all neurons of the sample. We

computed the mean, standard deviation, and CV of the connection probabilities between all groupings. We assessed correlations be-

tween neurons by calculating the number of incoming edges nEDGES between presynaptic neurons i (including those from VPM) and

postsynaptic neurons j by summing their respective DSO across all overlapping subvolumes x:

nEDGESði; jÞ =
X
k

DSOði;j;xk Þ (Equation 7)

We grouped all pre- and postsynaptic neurons by their cell type identity, and summed nEDGES(i, j) across each presynaptic

population. This resulted in themean number of connections (i.e., in-degree) each postsynaptic neuron j receives from this population

across networks. We computed a linear regression fit and Pearson’s linear correlation coefficient between the in-degrees of two

different presynaptic populations onto all neurons per postsynaptic cell type. We repeated this computation for all combinations

of presynaptic cell types.

Comparison with empirical connectivity data
We calculated the occurrences that two branches form zero, one, two, three, and (at least) four synapses for all branch pairs for a

sample of 252 subvolumes of 100 3 100 3 50 mm3 in layer 4 for comparison with the empirical data reported for layer 4 of mouse
Cell Reports 39, 110677, April 12, 2022 e5
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barrel cortex (Motta et al., 2019). We compared our predictions with 89 empirical connection probability measurements reported

across a set of 29 studies (Avermann et al., 2012; Bannister and Thomson, 2007; Beierlein and Connors, 2002; Beierlein et al.,

2003; Brown and Hestrin, 2009; Bruno and Sakmann, 2006; Bruno and Simons, 2002; Constantinople and Bruno, 2013; Crandall

et al., 2017; Feldmeyer et al., 1999, 2002, 2005, 2006, Hofer et al., 2011; Holmgren et al., 2003; Jiang et al., 2015; Jouhanneau

et al., 2015, 2018; Krieger et al., 2007; Lefort et al., 2009; Markram et al., 1997; Mercer et al., 2005; Perin et al., 2011; Petersen

and Sakmann, 2000; Silberberg and Markram, 2007; Song et al., 2005; Sun et al., 2006; Thomson et al., 2002; Yoshimura et al.,

2005). We emulated the respective experimental conditions in the barrel cortex model. For empirical data from in vitro studies, we

created twenty virtual brain slices of 300 mm thickness through the barrel cortex model. The slices were shifted by 20 mmwith respect

to one another along the rostrocaudal axis. We truncated the axons and dendrites of all neurons whose somata were located within

each slice (i.e., we cut branches at their intersection with the slice surface, and removed those branches from the model that became

disconnected from the soma). We computed the connection probabilities between each neuron pair in the virtual slices as defined by

Equations 1–3 with the quantity DSO being the contribution of pre- and postsynaptic sites by the truncated pairs’ morphologies with

respect to the total number of postsynaptic sites contributed by all neurons. We grouped the neurons as described in the respective

studies (Table S1); i.e., by their laminar soma location and—if reported—by their cell type. Layer borders were defined as reported

previously (Meyer et al., 2013). If the recording depth underneath the slice surface was not reported, we restricted the comparison to

pairs within the mean reported range of recording depths (31–130 mm). We computed the Pearson’s linear correlation coefficient

between the empirical and predicted connection probabilities and the 95% confidence bounds for new observations based on a

linear regression with no intercept using the Matlab built-ins fitlm and predict. We performed a random permutation test on the

correlation coefficient by shuffling the empirical and the predicted connection probabilities and re-computing their correlation coef-

ficient. We repeated this step 100,000 times. We compared the predictions with two empirical studies that performed connectivity

measurements as a function of inter-somatic distance (Perin et al., 2011; Avermann et al., 2012) (Tables S2 andS3). Here, we grouped

neurons additionally by their inter-somatic distance along the lateral axis (i.e., the axis running parallel to the slice surface). We

compared the predicted deviations of motif occurrences across L5PT triplets and doublets with empirical observations (Song

et al., 2005). We grouped the neurons accordingly and calculated the motif occurrences and ratios for approximately 1.7 million

L5PT doublets and approximately 200,000 L5PT triplets across 20 slices through the barrel cortexmodel. We used the same analysis

as reported by (Song et al., 2005) and normalized the resulting triplet ratios by the doublet motif occurrences to avoid over- or under-

representation of triplet motifs due to over- or under-representation of doublet motifs. We compared the motif probabilities across

the number of edges in motifs of eight neurons to empirical observations (Perin et al., 2011). For this purpose, we randomly sampled

20,000 sets of eight L5PTs across the 20 slices through the barrel cortex model. For each set of neurons and each number of edges

(ranging from 0 to 56 edges), we computed the number of edge combinations (e.g., 1 combination is possible for 0 or 56 edges, but

more than 1010 combinations are possible of 10 edges). If the number of edge combinations was less than 1,000, we iterated over all

combinations. If the number of combinations was larger than 1,000, we randomly generated 1,000motifs that matched the number of

edges. We calculated the respective (occurrence) probability of each edge motif in the slices through the barrel cortex model and a

random network constrained by the respective mean connection probability.

Connectivity analyses in the human cortex reconstruction
We downloaded the annotated synapse dataset released with the C3 segmentation (gs://h01-release/data/20210601/c3/synapses/

exported/) and filtered it for synapses whose presynaptic site was an axon and whose postsynaptic site was either a dendrite, soma,

or axon initial segment, resulting in 133,704,943 synapses as described in Shapson-Coe et al. (2021). We divided the dataset into

subvolumes of (25 mm)3 and assigned each synapse to a subvolume based on its location. Then we split each synapse into a pre-

and postsynaptic sites. The dataset contains 15,567 reconstructions annotated as a ‘neuron.’ For each pair of neurons, we calculated

the quantity DSO of its EXC and INH synapses separately. We then summed the EXC and INH DSO for each neuron pair over all sub-

volumes and derived the ensemble of network configurations. We determined the 50, 100, 150, and 200most connected neurons per

layer. For each of these groupings, we determined how often each triplet motif occurred in the reconstructed dataset compared to a

random network that has the same mean connection probability. We repeated this analysis for the ensemble of networks as well as

for samples of pyramidal neurons (annotated ‘pyramidal’).
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