3,059 research outputs found

    Overview of SERI's high efficiency solar cell research

    Get PDF
    The bulk of the research efforts supported by the Solar Energy Research Institute (SERI) High Efficiency Concepts area has been directed towards establishing the feasibility of achieving very high efficiencies, 30% for concentrator and more than 20% for thin film flat plate, in solar cell designs which could possibly be produced competitively. The research has accomplished a great deal during the past two years. Even though the desired performance levels have not yet been demonstrated, based on the recent progress, a greater portion of the terrestrial photovoltaics community believes that these efficiencies are attainable. The program will now allocate a larger portion of resources to low cost, large area deposition technology. The program is currently shifting greater emphasis on to the study of crystal growth in order to provide the understanding and tools needed to design a large area process

    Strong electronic correlations in Lix_xZnPc organic metals

    Full text link
    Nuclear magnetic resonance, electron paramagnetic resonance and magnetization measurements show that bulk Lix_xZnPc are strongly correlated one-dimensional metals. The temperature dependence of the nuclear spin-lattice relaxation rate 1/T11/T_1 and of the static uniform susceptibility χS\chi_S on approaching room temperature are characteristic of a Fermi liquid. Moreover, while for x≃2x\simeq 2 the electrons are delocalized down to low temperature, for x→4x\to 4 a tendency towards localization is noticed upon cooling, yielding an increase both in 1/T11/T_1 and χs\chi_s. The xx-dependence of the effective density of states at the Fermi level D(EF)D(E_F) displays a sharp enhancement for x≃2x\simeq 2, at the half filling of the ZnPc lowest unoccupied molecular orbitals. This suggests that Lix_xZnPc is on the edge of a metal-insulator transition where enhanced superconducting fluctuations could develop.Comment: 5 pages, 4 figure

    Stable and Efficient Computation of Generalized Polar Decompositions

    Get PDF

    Next-Gen Gas Network Simulation

    Get PDF

    A Structure-Preserving Divide-and-Conquer Method for Pseudosymmetric Matrices

    Get PDF
    We devise a spectral divide-and-conquer scheme for matrices that are self-adjoint with respect to a given indefinite scalar product (i.e. pseudosymmetic matrices). The pseudosymmetric structure of the matrix is preserved in the spectral division, such that the method can be applied recursively to achieve full diagonalization. The method is well-suited for structured matrices that come up in computational quantum physics and chemistry. In this application context, additional definiteness properties guarantee a convergence of the matrix sign function iteration within two steps when Zolotarev functions are used. The steps are easily parallelizable. Furthermore, it is shown that the matrix decouples into symmetric definite eigenvalue problems after just one step of spectral division

    Gaussian quadrature exponential sum modeling of near infrared methane laboratory spectra obtained at temperatures from 106 to 297 K

    Get PDF
    Transmission measurements made on near-infrared laboratory methane spectra have previously been fit using a Malkmus band model. The laboratory spectra were obtained in three groups at temperatures averaging 112, 188, and 295 K; band model fitting was done separately for each temperature group. These band model parameters cannot be used directly in scattering atmosphere model computations, so an exponential sum model is being developed which includes pressure and temperature fitting parameters. The goal is to obtain model parameters by least square fits at 10/cm intervals from 3800 to 9100/cm. These results will be useful in the interpretation of current planetary spectra and also NIMS spectra of Jupiter anticipated from the Galileo mission

    Learning formative skills of nursing practice in an accelerated program

    Get PDF
    The purpose of this qualitative research study was to describe how students in an accelerated master’s degree entry program experientially learned the practice of nursing. One research question examined in this study was: What formative experiences did students identify as helping them develop and differentiate their clinical practice? Data from clinical observations and a combination of small group and individual interviews were collected and analyzed using interpretive phenomenological methods. Students identified formative skills learned through the independent care of a patient as pivotal in their identity and agency development. By experiencing the responsibility and action from within the body and from within concrete situations, students developed a new understanding that changed their embodied ways of perceiving and orienting to the situation, as well as their skills and sense of agency
    • …
    corecore