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Next-Gen Gas Network Simulation
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Abstract

To overcome many-query optimization, control, or uncertainty quantification
work loads in reliable gas and energy network operations, model order reduction is
the mathematical technology of choice. To this end, we enhance the model, solver
and reductor components of the morgen platform, introduced in HIMPE ET AL
[J. Math. Ind. 11:13, 2021], and conclude with a mathematically, numerically and
computationally favorable model-solver-reductor ensemble.

1 Model Order Reduction for Gas and Energy Networks

Computer-based simulation of gas transport in pipeline networks has been an in-
dustrial as well as academic field of interest since the earliest scientific comput-
ing systems [5]. Especially, the transient simulation of gas flow and the dynamic
gas network behavior are the pinnacle discipline in this regard. The MATLAB-
based morgen — Model Order Reduction for Gas and Energy Networks — plat-
fornﬂ:ontinues this research by providing a modular open-source software sim-
ulation stack for the comparison and benchmarking of models (discretizations),
solvers (time steppers), and reductors (model reduction algorithms) [3]]. Beyond,
selecting apposite simulator components or ranking model reduction methods, an
overall goal is the acceleration of forward simulations, so that many-query tasks
relying thereon, such as optimization, control or uncertainty quantification, benefit
in terms of performance. In this work, we summarize and enhance the foundational
work of [3]] with additional details, and accompany version 1.1 of morgen.

1.1 Modules Overview

The morgen platform is organized into modules: models, solvers, reductors, net-
works and tests. The networks module holds topology and scenario data, and the
tests module defines the simulation and model reduction experiments, thus, we
summarize the currently available core modules: models, solvers, and reductors.
The models module assembles a semi-discrete input-output system from a network
topology. Currently, two spatially discrete ODE models are included (Table[T).
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Name | Identifier | port-Hamiltonian? | Reference
Midpoint discretization | ode_mid No 3, Sec. 2.4.1]
Endpoint discretization | ode_end Yes 3 Sec. 2.4.2]

Table 1: Available models in morgen in version 1.1.

The solvers module computes a time-discrete output trajectory from a model
and a scenario. Six ODE solvers are provided in the current version (Table[2).

Name Identifier Comment Reference
Adaptive 2nd Order Rosenbrock | generic uses ode23s 3L Sec. 5.3.1]
Ist Order Implicit-Explicit imex1 non-Runge-Kutta | [3} Sec. 5.3.3]
2nd Order Implicit-Explicit imex2 Runge-Kutta [3, Sec. 5.3.4]
Explicit 4th Order Runge-Kutta | rk4 [3, Sec. 5.3.2]
Explicit 2nd Order Runge-Kutta | rk2hyp increased stability | [9]

Explicit 4th Order Runge-Kutta | rh4hyp increased stability | [6]

Table 2: Available solvers in morgen in version 1.1.

The reductors module compresses a model given a solver and (generic training)
scenario. All in all, 23 reductors organized in four classes are available (Table[3).

Name Identifier | Linear Variant | Reference
Proper Orthogonal Decomposition | pod_r - [3} Sec. 4.2]
Empirical Dominant Subspaces eds_ro eds_ro_1 [3} Sec. 4.3]
Empirical Dominant Subspaces eds_wx eds_wx_1 [3 Sec. 4.3]
Empirical Dominant Subspaces eds_wz eds_wz_1 [3, Sec. 4.3]
Balanced POD bpod.ro | bpod_ro_1 [13} Sec. 4.4.3]
Balanced Truncation ebt_ro ebt_ro_1l 3l Sec. 4.4]
Balanced Truncation ebt_wx ebt_wx_1 3} Sec. 4.4]
Balanced Truncation ebt_wz ebt_wz_1 3} Sec. 4.4]
Goal-Oriented POD gopod.r | — [13} Sec. 4.5.1]
Balanced Gains ebg_ro ebg_ro_1 [3} Sec. 4.5]
Balanced Gains ebg_wx ebg_wx_1 [3} Sec. 4.5]
Balanced Gains ebg_wz ebg.wz_1 [3} Sec. 4.5]
DMD Galerkin dmd_r - 3 Sec. 4.6]

Table 3: Available reductors in morgen in version 1.1.

2 Enhanced Functionality

In this section we discuss some properties of the morgen platform. Specifically,
one aspect of each of the core modules (model, solver, reductor) is addressed.
Additionally, further network/scenario data-sets were added in version 1.1, too.



2.1 Gravity Term

One component of the gas pipeline model, particularly of the retarding forces in
the mass-flux equation, is the gravity term, which accounts for increase or decrease
in momentum due to an incline in a pipeline section. In [2] this gravity term is
modeled in great detail, as it does not only consider a height difference between
the pipe’s end points, as morgen does, but also the height profile for the full run
of the pipe (see [2, Fig. 11]). Both approaches are justified, depending on the
aimed accuracy of the model, as discussed in [1]. Such pipeline height profiles
can be included into morgen by supplying a pipe as sequence of virtual pipes,
each connecting two subsequent local height extrema. Also in morgen 1.1, the
gravity term is configurable so it is computable based on the dynamic pressure,
static pressure or not at all.

2.2 Explicit Solvers

In 3], the classic explicit 4th order Runge-Kutta method rk4 was tested, as it was
employed in earlier works. Yet, we found it to be not suitable for gas network
simulations. In [4] an explicit Runge-Kutta method from [9] was suggested for
this application, while in [6]] a Runge-Kutta method was optimized in terms of its
hyperbolic stability limit. The Butcher tableaus for these explicit 5-stage, 2nd order
and 6-stage, 4th order methods with increased stability are given by:
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These additional solvers rk2hyp, rk4hyp (see Table[d]for coefficients) were
added tomorgen 1.1 and tested against various test problems, and both increased-
stability solvers allow larger time-steps then rk4, specifically in conjunction with
the ode_end model, but compared to the implicit-explicit solvers imex1 and
imex2, they are still not fully competitive. However, these explicit methods could
be interesting for new implicit-explicit or predictor-corrector methods.

cp=ay= 0.16791846623918 b1 = —0.15108370762927
cz=a3= 0.48298439719700 by = 0.75384683913851
cs=as= 0.70546072965982 b3y = —0.36016595357907
cs =as5 = 0.09295870406537 by = 0.52696773139913
ce=ae¢= 0.76210081248836 bs = 0.23043509067071

Table 4: Butcher tableau coefficients for the rk4hyp method; values taken
from [6 Sec. 4.2].



2.3 Gain Matching

An important quality for certain applications of model reduction, such as electrical
circuits, is the preservation of the steady-state gain (also known as DC gain), which
is the output for zero frequency input. First, we clarify that we are not discussing
the actual steady-state gain of the reduced order model, due to the centering around
the steady-state and hence, the steady-state gain match [3, Sec. 3]. Yet, there
can still be an output error for a constant input on top of the steady-state input,
which is relevant due to the assumed low-frequency boundary values. Since there
is an interpretation of gas networks as circuits [8], we consider this reduced model
property, which induces two questions: How to compute the steady-state gain, and
how to correct a gain mismatch? The former is answered by [10], stating that for
a linear port-Hamiltonian model, with components as in [3, Sec. 2.9], the gain is
computable by:

S=CcQ 'B.

Since the models are nonlinear and do not have to be port-Hamiltonian, but
comprise the same model components, the above formula can still be applied albeit
yielding only an approximation. The per-port gain mismatch is then computed by
the difference of full and reduced order model gain:

D:=(CO 'B)-(C.0;'B,),

which can then be used to correct the reduced order model gain by adding it as
a feedthrough matrix to the output function, as described in the gain matching
procedure in [[7]. We added this approximate gain matching test to morgen 1.1.

The gain correction was tested with all reductors (Table[3). For all reductors the
correction was about the level of 1073, except for the bpod_ro method, for which
the gain correction fully deteriorates the reduced order model. Thus, the improve-
ment of reduced order models is small at best. This is not unexpected, considering
the gas network model is hyperbolic: A single pipeline, or more generally an input-
output system based on a first order hyperbolic partial differential equation, has the
transport property which expresses as a delay in observable outputs of controllable
inputs. Hence, an immediate transformation of inputs to outputs (circumventing
the system dynamics), as a feedthrough term does, is typically not needed.

3 Numerical Experiments

We extend the numerical experiments in [3], by reimplementing the results from [3]],
specifically we test the hypothetical network [5, Part 2], and the actual network
[I5} Part 3] on their associated scenarios. Both are tree networks, and the empirical-
Gramian-based Galerkin reductors pod.r, gopod.r, dmd.r, eds_ro_l,
eds_wx_1, eds_wz_1 are tested on the port-Hamiltonian endpoint model
ode_end and the first order implicit-explicit solver imex1. The results are pre-
sented in Figure[I] In line with other experiments, the eds_ro_1 reductor yields
the most accurate results.
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(a) Hypothetical network’s test scenario.
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(c) Relative Ly ® Ly error between ROM and
FOM for the ode_end model, imex1 solver,
and linear reductors versus reduced order for
the hypothetical network.
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(d) Relative L, ® L; error between ROM and
FOM for the ode_end model, imex1 solver,
and linear reductors versus reduced order for
the actual network.

Struct. Proper Orthogonal Decomposition (WR)
=== Struct. Goal-Oriented POD (WR)

Struct. Dynamic Mode Decomposition Galerkin (WR)
=== Struct. Empirical Dominant Subspaces (WR + WR?)

Struct. Empirical Dominant Subspaces (WX*)
=== Struct. Empirical Dominant Subspaces (WZ*)

(e) Common legend for the model reduction error plots.

Reductor | MORSCORE | Avg. Gain Error

Reductor | MORSCORE | Avg. Gain Error

pod_r 0.27 6-107° pod_r 0.19 2.1079
gopod.r 0.26 6-107° gopod.r 0.15 1-107°
dmd._r 0.18 81076 dmd._r 0.15 2-107°
eds_ro_1 0.30 8-107° eds_ro_1 0.24 2.1073
eds_wx_1 0.18 81076 eds_wx_1 0.04 2.107°
eds_wz_1 0.15 8-10°° eds_wz_1 0.03 2.107°

(f) MORSCOREs (200, &pqen(16)) in the
L, ® Ly error norm, and mean steady-state
gain error for the hypothetical network.

(2) MORSCOREs [(200, &pach(16)) in the

L, ® Ly error norm, and mean steady-state
gain error for the actual network.

Figure 1: Visualization of the test scenario, model reduction errors, MORSCOREs, and
gain errors of the tested ROMs for the hypothetical network [3] Part 2] (left side) and
actual network [3] Part 3] (right side). Computed with MATLAB 2021a.
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Based on the heuristic comparison in [3]] and this work’s numerical results, we
recommend a port-Hamiltonian model, an implicit-explicit solver, and a Galerkin
reductor, particularly, the endpoint discretization, the first order IMEX time step-
per, and the structured empirical dominant subspaces method as the model-solver-
reductor ensemble, for the next generation of transient gas network simulators.
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