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We consider the stochastic Navier-Stokes equations in a multidimensional domain, where the noise term allows
jumps and where the action of a control in order to influence the dynamics is included. In order to prove
existence and uniqueness of an optimal control w.r.t. a given cost functional, we first need to show the existence
and uniqueness of a local mild solution of the considered stochastic Navier-Stokes equations. We then discuss
the control problem, where the cost functional includes stopping times dependent on controls. Based on the
continuity of the cost functional, we can apply existence and uniqueness results provided in [1], which enables
us to show that a unique optimal control exists.
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1 Introduction

In this paper, we discuss an optimal control problem for the unsteady Navier-Stokes equations influenced by noise
terms. Concerning fluid dynamics, noise may enter the system due to structural vibration and other environmental
effects, where we assume that jumps are allowed. The aim is to control flow fields affected by noise, where we
incorporate physical requirements, such as drag minimization, lift enhancement, mixing enhancement, turbulence
minimization and stabilization, see [2] and the references therein; see also [3].

Before turning our attention to the actual optimal control problem, it is first necessary to write the Navier-
Stokes equations in a form containing a control input and a noise term. This is done by writing the external
forcing in a specific form, which results then in an initial value problem for the controlled stochastic Navier-
Stokes equations. In order to prove existence and uniqueness of an optimal control for a given cost functional,
one first needs to ensure existence and uniqueness for this initial value problem for all feasible initial values
and a given fixed control. As we argue below, the necessary existence and uniqueness result for the controlled
stochastic Navier-Stokes equations has not been available in the literature so far. Therefore, we first turn our
attention to this problem.

A large number of authors consider the initial value problem of the deterministic Navier-Stokes equations
by an L2-space approach. In [2, 4], the existence and uniqueness of global weak solutions for two-dimensional
domains are proved by using a Galerkin approximation. For three-dimensional domains, uniqueness is still an
open problem. Using semigroup theory, the existence of a unique local solution was proved in [5]. Under some
conditions on the initial data and the external force, the result was extended to a global solution. A generalization
in terms of Lr theory can be found in [6, 7].

In the last decades, existence and uniqueness results of solutions to the stochastic Navier-Stokes equations
have been studied extensively. Unique weak solutions of the stochastic Navier-Stokes equations exist only for
two-dimensional domains. In [8, 9], weak solutions are considered with noise terms given by Wiener processes.
Weak solutions with Lévy noise are considered in [10, 11]. For three-dimensional domains, uniqueness is still
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an open problem and weak solutions are introduced as martingale solutions, see [12–16]. Another approach is
given by using semigroup theory leading to the definition of mild solutions. The existence and uniqueness of a
mild solution over an arbitrary time interval can be obtained under certain additional assumptions, see [17,18]. In
general, a unique mild solution of the stochastic Navier-Stokes equations does not exist. Thus, stopping times are
required to define local mild solutions. For the local mild solution with additive noise given by Wiener processes,
we refer to [19]. In [20, 21], the stochastic Navier-Stokes equations with additive Lévy noise are considered.
In [22], an existence and uniqueness result for strong pathwise solutions is given. For further definitions of
solutions to the fractional stochastic Navier-Stokes equations, we refer to [18].

We generalize the results in the sense that we consider a local mild solution of the multidimensional stochastic
Navier-Stokes equations with multiplicative Lévy noise. Thus, we involve especially two-dimensional as well as
three-dimensional domains and the noise may depend on the state. Using L2 theory, we first analyze a modified
system to obtain the existence and uniqueness of a mild solution over an arbitrary time interval by applying
a Banach fixed point theorem. Based on the mild solution of this modified system, we can introduce stopping
times and prove the existence and uniqueness of the local mild solution to the stochastic Navier-Stokes equations.
Under certain additional assumptions, these stopping times are almost surely equal to an arbitrary terminal point
and therefore, the local mild solution becomes a global mild solution.

The cost functional introduced in this paper is motivated by common control strategies. In [23–26], the prob-
lem is formulated as a tracking type problem arising in data assimilation. Approaches that minimize the enstrophy
can be found in [2,27,28]. In [29], the cost functional combines both strategies by introducing weights. The short-
coming of these papers is the restriction to two-dimensional domains. Here, we remove this limitation and using
the theory of fractional power operators, we formulate a control problem such that under certain conditions, the
special cases mentioned can be obtained. Moreover, we have to pay particular attention to the fact that in general
the solution exists only locally in time. Hence, the cost functional has to contain stopping times to be well de-
fined. Due to the existence and uniqueness result of the solution, the state as well as the stopping times depend
on the controls. This is the major difficulty when analyzing the properties of the cost functional. However, we
show that the state as well as the stopping times are continuous with respect to the control. Therefore, we can
conclude that the cost functional is continuous, and we prove the existence and uniqueness of optimal controls
based on results given in [1].

The main contribution of this paper is an existence and uniqueness result of a local mild solution to the
stochastic Navier-Stokes equations with multiplicative Lévy noise stated in Theorem 4.6 and Theorem 4.7. Here,
we involve especially two-dimensional as well as three-dimensional domains. Moreover, we analyze a control
problem, where the cost functional includes stopping times dependent on controls. Based on a continuity result,
we get the existence and uniqueness of optimal controls stated in Theorem 5.2.

The paper is organized as follows. In Section 2, we reformulate the deterministic Navier-Stokes equations
in an abstract form. Moreover, we state some well known properties of the Stokes operator as well as for the
nonlinear term. A brief introduction of Hilbert space valued Lévy processes and the properties of stochastic
integrals are given in Section 3 for better readability. Section 4 addresses the existence and uniqueness of a local
mild solution to the stochastic Navier-Stokes equations with multiplicative Lévy noise. In Section 5, we prove
the continuity of the cost functional with respect to the control, which enables us to conclude that unique optimal
controls exist.

2 Preliminaries

Throughout this paper, let D ⊂ Rn, n ≥ 2, be a connected and bounded domain with C∞ boundary ∂D. We
consider the following Navier-Stokes equations with Dirichlet boundary condition:

∂

∂t
y(t, x) + (y(t, x) · ∇)y(t, x) +∇p(t, x)− ν∆y(t, x) = f(t, x) in (0, T )×D,

div y(t, x) = 0 in (0, T )×D,
y(t, x) = 0 on (0, T )× ∂D,
y(0, x) = ξ(x) in D,
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where y(t, x) ∈ Rn denotes the velocity field with initial value ξ(x) ∈ Rn and p(t, x) ∈ R describes the pressure
of the fluid. The parameter ν > 0 is the viscosity parameter (for the sake of simplicity, we assume ν = 1) and
f(t, x) ∈ Rn is the external force.

Next, we state the Navier-Stokes equations in an abstract form. For more details, we refer to [7]. For s ≥ 0,
we denote by Hs(D) the usual Sobolev space and for s ≥ 1

2 , we set Hs
0(D) = {y ∈ Hs(D) : y = 0 on ∂D}. We

introduce the following common spaces:

H = Completion of {y ∈ (C∞0 (D))n : div y = 0 in D} in (L2(D))n

=
{
y ∈ (L2(D))n : div y = 0 in D, y · η = 0 on ∂D

}
,

V = Completion of {y ∈ (C∞0 (D))n : div y = 0 in D} in
(
H1(D)

)n
=
{
y ∈

(
H1

0 (D)
)n

: div y = 0 in D
}
,

where η denotes the unit outward normal to ∂D. The spaces H equipped with the inner product

〈y, z〉H = 〈y, z〉(L2(D))n =

∫
D

n∑
i=1

yi(x)zi(x) dx

for every y = (y1, ..., yn), z = (z1, ..., zn) ∈ H becomes a Hilbert space. For all x = (x1, ..., xn) ∈ D, we
denote Dj = ∂|j|

∂x
j1
1 ···∂x

jn
n

with |j| =
∑n
i=1 ji. We set Djy = (Djy1, ..., D

jyn) for every y = (y1, ..., yn) ∈ V
and |j| ≤ 1. Then the space V equipped with the inner product

〈y, z〉V =
∑
|j|≤1

〈Djy,Djz〉(L2(D))n

for every y, z ∈ V becomes a Hilbert space. The norm in H and V is denoted by ‖ · ‖H and ‖ · ‖V , respectively.
Moreover, we get the orthogonal Helmholtz decomposition

(L2(D))n = H ⊕ {∇y : y ∈ H1(D)},

where ⊕ denotes the direct sum. Then there exists an orthogonal projection Π: (L2(D))n → H , see [30]. Next,
we define the Stokes Operator A : D(A) ⊂ H → H by Ay = −Π∆y for every y ∈ D(A), where ∆ denotes the
Laplace operator. The domain is given by

D(A) =
(
H2(D)

)n ∩ V.
We have the following properties of the Stokes operator, see [7, 31–33].

Lemma 2.1 The Stokes operator A : D(A) ⊂ H → H is positive, self adjoint and has a bounded inverse.
Moreover, the operator −A is the infinitesimal generator of an analytic semigroup (e−At)t≥0 such that we have∥∥e−At∥∥L(H)

≤ 1 for all t ≥ 0.

Due to the previous Lemma, we can introduce fractional powers of the Stokes operator, see [33–35]. For
α > 0, we define

A−α =
1

Γ(α)

∞∫
0

tα−1e−Atdt,

where Γ(·) denotes the gamma function. The operator A−α is linear, bounded and invertible in H . Hence, we
define for all α > 0

Aα =
(
A−α

)−1
.

Moreover, we set A0 = I , where I is the identity operator in H . For α > 0, the operator Aα is linear and closed
in H with dense domain D(Aα) = R(A−α), where R(A−α) denotes the range of A−α. Next, we provide some
useful properties of fractional powers of the Stokes operator. Let us denote the resolvent set of the operator A by
ρ(A). Then we have the following result.
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Lemma 2.2 (cf. Section 2.6, [34]) We have

(i) for α, β ∈ R, we have Aα+βy = AαAβy for every y ∈ D(Aγ), where γ = max{α, β, α+ β},

(ii) e−At : H → D(Aα) for all t > 0 and α ≥ 0,

(iii) we have Aαe−Aty = e−AtAαy for every y ∈ D(Aα) with α ∈ R,

(iv) the operator Aαe−At is bounded for all t > 0 and there exist constants Mα, θ > 0 such that∥∥Aαe−At∥∥L(H)
≤Mαt

−αe−θt,

(v) 0 ≤ β ≤ α ≤ 1 implies D(Aα) ⊂ D(Aβ) and there exists a constant C > 0 such that for every y ∈ D(Aα)∥∥Aβy∥∥
H
≤ C ‖Aαy‖H .

Thus, we obtain that the space D(Aα) for α ∈ (0, 1] equipped with the inner product

〈y, z〉D(Aα) = 〈Aαy,Aαz〉H

for every y, z ∈ D(Aα) becomes a Hilbert space.
Next, we specify the domain of the operator Aα for α ∈ (0, 1) in terms of Sobolev spaces. Let the oper-

ator AD : D(AD) ⊂ (L2(D))n → (L2(D))n be the Laplace operator with homogeneous Dirichlet boundary
condition given by ADy = −∆y for every y ∈ D(AD). The domain is given by

D(AD) = (H1
0 (D))n ∩ (H2(D))n.

Then AD is a positive and self adjoint operator and −AD is the infinitesimal generator of an analytic semigroup
(e−ADt)t≥0 such that

∥∥e−ADt∥∥L((L2(D))n)
≤ 1 for all t ≥ 0. Hence, we can define fractional powers and we get

the following result.
Proposition 2.3 (Theorem 1.1, [31]) Let the operator A : D(A) ⊂ H → H be the Stokes Operator and

let AD : D(AD) ⊂ (L2(D))n → (L2(D))n be the Laplace operator with homogeneous Dirichlet boundary
condition. Then, we have for any α ∈ (0, 1)

D(Aα) = D(AαD) ∩H.

The domain of AαD can be determined explicitly for α ∈ (0, 1).

Proposition 2.4 (cf. Theorem 1, [36]) Let AD : D(AD) ⊂
(
L2(D)

)n → (
L2(D)

)n
be the Laplace operator

with homogeneous Dirichlet boundary condition. Then we have

(i) D(AαD) =
(
H2α(D)

)n
for 0 < α < 1

4 ,

(ii) D(A
1/4
D ) ⊂

(
H1/2(D)

)n
,

(iii) D(AαD) =
(
H2α

0 (D)
)n

for 1
4 < α < 3

4 ,

(ii) D(A
3/4
D ) ⊂

(
H

3/2
0 (D)

)n
,

(v) D(AαD) =
(
H2α

0 (D)
)n

for 3
4 < α < 1.

We define B(y, z) = Π(y · ∇)z for some y, z ∈ H . If y = z, we write B(y) = B(y, y). Applying the
projection Π, the above Navier-Stokes equations can be formulated in the following abstract form:

d

dt
y(t) = −Ay(t)−B(y(t)) + f(t) in (0, T ),

y(0) = ξ,
(1)
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where we assume ξ, f(t) ∈ H . According to [7], one can consider this equation in integral form

y(t) = e−Atξ −
t∫

0

e−A(t−s)[B(y(s))− f(s)]ds

for t ∈ [0, T ]. In general, existence and uniqueness results of a solution to system (1) can not be obtained over the
time interval [0, T ]. However, for a certain point of time T∗ ∈ (0, T ], there exists a unique solution of system (1)
on the time interval [0, T∗], see [7, Theorem 2.3] and the references therein. In the remaining part of this section,
we recall some useful results for dealing with the nonlinear term in equation (1).

Lemma 2.5 (Lemma 2.2, [7]) Let 0 ≤ δ < 1
2 + n

4 . If y ∈ D(Aα1) and z ∈ D(Aα2), then we have∥∥A−δB(y, z)
∥∥
H
≤ M̃ ‖Aα1y‖H ‖A

α2z‖H ,

with some constant M̃ = M̃δ,α1,α2 , provided that α1, α2 > 0, δ + α2 >
1
2 and δ + α1 + α2 ≥ n

4 + 1
2 .

Corollary 2.6 Let α1, α2 and δ be as in Lemma 2.5. If y, z ∈ D(Aβ), β = max{α1, α2}, then we have∥∥A−δ(B(y)−B(z))
∥∥
H
≤ M̃(‖Aα1y‖H ‖A

α2(y − z)‖H + ‖Aα1(y − z)‖H ‖A
α2z‖H).

3 Lévy processes in Hilbert Spaces and the Stochastic Integral

In this section, we give a brief introduction to stochastic integrals, where the noise term is defined as a Hilbert
space valued Lévy process. For more details, see [37].

Throughout this paper, let (Ω,F ,P) be a complete probability space endowed with a filtration (Ft)t∈[0,T ]

satisfying Ft =
⋂
s>t Fs for all t ∈ [0, T ] and F0 contains all sets of F with P-measure 0. We start with the

formal definition of a Hilbert space valued Lévy process and some basic properties.
Definition 3.1 (cf. Definition 4.1, [37]) A stochastic process (L(t))t∈[0,T ] taking values in a Hilbert space E

is called a Lévy process if

• P-a.s. L(0) = 0,

• (L(t))t∈[0,T ] has independent and homogeneous increments, and

• (L(t))t∈[0,T ] is stochastically continuous, i.e. for all t ∈ [0, T ] and ε > 0

lim
s→t

P(‖L(s)− L(t)‖E > ε) = 0.

Definition 3.2 (cf. Definition 3.16, [37]) A stochastic process (L(t))t∈[0,T ] taking values in a Hilbert space
E is called a càdlàg process if

• (L(t))t∈[0,T ] is right-continuous, i.e. L(t+) = lim
s↓t

L(s) = L(t) for all t ∈ [0, T ] and

• (L(t))t∈[0,T ] has left limits, i.e. L(t−) = lim
s↑t

L(s) exists for all t ∈ [0, T ].

Proposition 3.3 (cf. Theorem 4.3, [37]) For every Lévy process (L(t))t∈[0,T ] there exists a càdlàg process
(L̃(t))t∈[0,T ] such that P(L(t) = L̃(t)) = 1 for all t ∈ [0, T ].

Proposition 3.4 (Theorem 4.47 (i), [37]) A Lévy process (L(t))t∈[0,T ] on a Hilbert space E is square inte-
grable if and only if its Lévy measure ν satisfies∫

E

‖y‖2Eν(dy) <∞.

We denote by L1(E) the space of all nonnegative definite symmetric nuclear operators on E. Then we get the
following result.
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Proposition 3.5 (Theorem 4.44, [37]) Let (L(t))t∈[0,T ] be a square integrable Lévy process. Then there exist
m ∈ E and Q ∈ L1(E) such that for all t, s ∈ [0, T ] and y, z ∈ E

E〈L(t), y〉E = 〈m, y〉E t,

E〈L(t)−mt, y〉E〈L(s)−ms, z〉E = t ∧ s 〈Qy, z〉E ,
E‖L(t)−mt‖2E = t T r(Q),

where t ∧ s = min{t, s}.
In the proposition above, the element m ∈ E is called mean and Q ∈ L1(E) is called the covariance operator.
Proposition 3.6 (Theorem 4.49 (i), [37]) If the process (L(t))t∈[0,T ] is an integrable Lévy process with mean

zero, then (L(t))t∈[0,T ] is a martingale with respect to the filtration (Ft)t∈[0,T ].
Remark 3.7 For a comparison with finite dimensional Lévy processes, we refer to [38].
The construction of the stochastic integral with respect to Lévy processes is similar to the case of Q-Wiener

processes. For a comparison to Q-Wiener processes, we refer to [39]. First, we give a definition of predictable
processes. Let P denote the smallest σ-field of subsets of [0, T ]× Ω. Then we have the following definition.

Definition 3.8 (cf. Definition 3.4, [37]) A stochastic process (X(t))t∈[0,T ] taking values in the measurable
space (X ,B(X )) is called predictable if it is a measurable mapping from ([0, T ]× Ω,P) to (X ,B(X )).

Every predictable process is adapted to the filtration (Ft)t∈[0,T ]. The converse is not true in general. However,
the following lemma is useful to conclude that a stochastic process has a predictable version.

Lemma 3.9 (Proposition 3.21, [37]) Assume that the stochastic process (X(t))t∈[0,T ] is (Ft)t∈[0,T ] adapted
and stochastically continuous. Then the process (X(t))t∈[0,T ] has a predictable version.

Let (L(t))t∈[0,T ] be an E-valued square integrable Lévy martingale, i.e. (L(t))t∈[0,T ] is a square integrable
Lévy process and a martingale with respect to (Ft)t∈[0,T ]. We denote the covariance operator of (L(t))t∈[0,T ]

by Q ∈ L1(E). Then there exists a unique operator Q1/2 ∈ L1(E) such that Q1/2 ◦ Q1/2 = Q. We denote by
L(HS)(Q

1/2(E);H) the space of Hilbert-Schmidt operators mapping from Q1/2(E) into another Hilbert space
H. In what follows, let (Φ(t))t∈[0,T ] be a predictable process with values in L(HS)(Q

1/2(E);H) such that

E
T∫

0

∥∥∥Φ(t)Q1/2
∥∥∥2

L(HS)(E;H)
dt <∞. (2)

Then, one can define the stochastic integral

ψ(t) =

t∫
0

Φ(s)dL(s)

for all t ∈ [0, T ] and P-a.s. and we have

E ‖ψ(t)‖2H = E
t∫

0

∥∥∥Φ(s)Q1/2
∥∥∥2

L(HS)(E;H)
ds. (3)

The following proposition is useful when dealing with a closed operator A : D(A) ⊂ H → H.
Proposition 3.10 If Φ(t)y ∈ D(A) for every y ∈ E, all t ∈ [0, T ] and P-almost surely,

E
T∫

0

∥∥∥Φ(t)Q1/2
∥∥∥2

L(HS)(E;H)
dt <∞ and E

T∫
0

∥∥∥AΦ(t)Q1/2
∥∥∥2

L(HS)(E;H)
dt <∞,

then we have P-a.s.
∫ T

0
Φ(t)dL(t) ∈ D(A) and

A
T∫

0

Φ(t)dL(t) =

T∫
0

AΦ(t)dL(t).
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P r o o f. One obtains the result similarly to the case of stochastic integrals with respect to Q-Wiener processes,
see [39, Proposition 4.30].

The remaining part of this section is devoted to stochastic convolutions. Let (S(t))t≥0 be a C0-semigroup in
H. Then the stochastic convolution (I(t))t∈[0,T ] given by

I(t) =

t∫
0

S(t− s)Φ(s)dL(s) (4)

is well defined for all t ∈ [0, T ] and P-almost surely. Under additional assumptions, we get the following maximal
inequality.

Proposition 3.11 (cf. Proposition 1.3 (i), [40]) Let the C0-semigroup (S(t))t≥0 satisfy ‖S(t)‖L(H) ≤ 1 for
all t ≥ 0. If p ∈ (0, 2], then

E sup
t∈[0,T ]

∥∥∥∥∥∥
t∫

0

S(t− s)Φ(s)dL(s)

∥∥∥∥∥∥
p

H

≤ C̃p E

 T∫
0

∥∥∥Φ(t)Q1/2
∥∥∥2

L(HS)(E;H)
dt

p/2

,

where C̃p > 0 is a constant.
In order to define local mild solutions to SPDEs, we need to introduce a stopped stochastic convolution. Here,

we can argue as in [41, Appendix]. Let τ be a stopping time with values in [0, T ]. We consider the stopped
process (I(t ∧ τ))t∈[0,T ], where t ∧ τ = min{t, τ}. Unfortunately, the formula

I(t ∧ τ) =

t∧τ∫
0

S(t ∧ τ − s)Φ(s)dL(s)

is not well defined due to the fact that we integrate a process, which is not even (Ft)t∈[0,T ] adapted. To overcome
this problem, we introduce a process (Iτ (t))t∈[0,T ] given by

Iτ (t) =

t∫
0

1[0,τ)(s)S(t− s)Φ(s ∧ τ)dL(s) (5)

for all t ∈ [0, T ] and P-almost surely. We get the following result.
Lemma 3.12 Let (S(t))t≥0 be a C0-semigroup in H and let τ be a stopping time with values in [0, T ].

Moreover, let the processes (I(t))t∈[0,T ] and (Iτ (t))t∈[0,T ] be given by (4) and (5), respectively. Then, we have
for all t ∈ [0, T ] and P-almost surely

S(t− t ∧ τ)I(t ∧ τ) = Iτ (t)

and in particular

I(t ∧ τ) = Iτ (t ∧ τ).

P r o o f. The processes (I(t))t∈[0,T ] and (Iτ (t))t∈[0,T ] have càdlàg modifications by [37, Theorem 9.24]. The
remaining part of the proof can be obtained similarly to [41, Lemma A.1].

4 The Stochastic Navier-Stokes Equations

Here, we assume that the external force f(t) in equation (1) can be decomposed as the sum of a control term and
a noise term. In addition, we suppose that the noise allows jumps and is dependent on the state. This leads us to
the following SPDE on D(Aα):{

dy(t) = −[Ay(t) +B(y(t))− Fu(t)]dt+G(y(t))dL(t),

y(0) = ξ,
(6)
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where the initial value ξ ∈ L2(Ω;D(Aα)) is assumed to be F0-measurable and the Lévy process (L(t))t∈[0,T ]

is a square integrable martingale with values in H and covariance operator Q ∈ L1(H). Moreover, let the set of
admissible controls U contain all (Ft)t∈[0,T ] adapted processes (u(t))t∈[0,T ] with values in D(Aβ), β ∈ [0, α],
such that

E
T∫

0

‖u(t)‖2D(Aβ) dt ≤ C,

where C > 0 is a constant. Let A : D(A) ⊂ H → H be the Stokes operator given by Ay = −Π∆y for every
y ∈ D(A) and let the nonlinear operator be defined by B(y) = Π(y · ∇)y for every y ∈ D(Aα). Furthermore,
we assume F ∈ L(D(Aβ)) and G : H → L(HS)(Q

1/2(H);D(Aα)) is a map such that for every y, z ∈ H∥∥∥G(y)Q1/2
∥∥∥
L(HS)(H;D(Aα))

≤ Ĉ (1 + ‖y‖H), (7)∥∥∥(G(y)−G(z))Q1/2
∥∥∥
L(HS)(H;D(Aα))

≤ Ĉ ‖y − z‖H , (8)

where Ĉ > 0 is a constant.
Remark 4.1 According to Corollary 2.3, we have D(Aα) ⊂ H for any α ∈ (0, 1). Therefore, we seek for a

mild solution of system (6) in a dense subset of the space H .
In general, we can not ensure the existence and uniqueness of a mild solution over an arbitrary time interval

[0, T ] since the nonlinear term B(·) is only locally Lipschitz continuous. Thus, we need the following definition
of a local mild solution.

Definition 4.2 (cf. Definition 3.2, [18]) Let τ be a stopping time taking values in (0, T ] and (τm)m∈N0
be an

increasing sequence of stopping times taking values in (0, T ] satisfying

lim
m→∞

τm = τ.

A predictable process (y(t))t∈[0,τ) with values in D(Aα) is called a local mild solution of system (6) if for fixed
m ∈ N0

E sup
t∈[0,τm)

‖y(t)‖2D(Aα) <∞,

and we have for each m ∈ N0, all t ∈ [0, T ] and P-a.s.

y(t ∧ τm) = e−A(t∧τm)ξ −
t∧τm∫
0

Aδe−A(t∧τm−s)A−δB(y(s))ds+

t∧τm∫
0

e−A(t∧τm−s)Fu(s)ds

+ Iτm(G(y))(t ∧ τm), (9)

where

Iτm(G(y))(t) =

t∫
0

1[0,τm)(s)e
−A(t−s)G(y(s ∧ τm))dL(s).

Remark 4.3 In equation (9), note that the stopped stochastic convolution is defined according to Section 3.
This requires that the integrand is a predictable process, which can be ensured only if the process (y(t))t∈[0,τ)

is predictable. Furthermore, the process (y(t))t∈[0,τ) can also be defined equivalently as an (Ft)t∈[0,T ] adapted
càdlàg process due to [37, Proposition 9.10].

Next, we prove the existence and uniqueness of the local mild solution to system (6), whereby we closely
follow [18, Appendix A]. Therefor, we need the following result.
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Lemma 4.4 (cf. [18, 42]) Let B be a Banach space and m ∈ N be fixed. We define πm : B → B by

πm(y) =

{
y ‖y‖B ≤ m,
m‖y‖−1

B y ‖y‖B > m,
(10)

for every y ∈ B. Then we have the following estimates for every y, z ∈ B:

‖πm(y)− πm(z)‖B ≤ 2 ‖y − z‖B and ‖πm(y)‖B ≤ min{m, ‖y‖B}.

Instead of system (6), we first consider the following system for t ∈ (0, T ] and fixed m ∈ N0:{
dym(t) = −[Aym(t) +B(πm(ym(t)))− Fu(t)]dt+G(ym(t))dL(t),

ym(0) = ξ,
(11)

where the map πm(·) is given by (10).
Definition 4.5 A predictable process (ym(t))t∈[0,T ] with values in D(Aα) is called a mild solution of system

(11) if

E sup
t∈[0,T ]

‖ym(t)‖2D(Aα) <∞,

and we have for all t ∈ [0, T ] and P-a.s.

ym(t) = e−Atξ −
t∫

0

Aδe−A(t−s)A−δB(πm(ym(s)))ds+

t∫
0

e−A(t−s)Fu(s)ds

+

t∫
0

e−A(t−s)G(ym(s))dL(s). (12)

In [37], an existence and uniqueness result is shown for mild solutions of SPDEs satisfying a weaker condition.
This result can not be applied here since especially a maximal inequality for the stochastic convolution is required,
which is provided by Proposition 3.11. Furthermore, note that the operator B(πm(·)) is bounded and globally
Lipschitz on the domain of fractional powers to the Stokes operator. Hence, an existence and uniqueness result of
a mild solution to system (11) follows by applying the Banach fixed point theorem. However, we will prove this
result here to justify that the solution is a predictable process. Moreover, we get constraints of the parameters,
which are necessary to obtain a well defined control problem in the next section.

Theorem 4.6 Let the parameters α ∈ (0, 1) and δ ∈ [0, 1) satisfy 1 > δ + α > 1
2 and δ + 2α ≥ n

4 + 1
2 .

Furthermore, let u ∈ U be fixed for β ∈ [0, α] such that α−β < 1
2 . Then for any ξ ∈ L2(Ω;D(Aα)), there exists

a unique mild solution (ym(t))t∈[0,T ] of system (11) for fixed m ∈ N0. Moreover, the process (ym(t))t∈[0,T ] is
mean square continuous in D(Aα).

P r o o f. Let m ∈ N0 be fixed and let the space ZT contain all predictable processes (z(t))t∈[0,T ] with values
in D(Aα) such that E supt∈[0,T ] ‖z(t)‖2D(Aα) <∞. The space ZT equipped with the norm

‖z‖ZT = E sup
t∈[0,T ]

‖z(t)‖2D(Aα)

for every z ∈ ZT becomes a Banach space. We define for every z ∈ ZT , all t ∈ [0, T ] and P-a.s.

Φm(z)(t) = e−Atξ −
t∫

0

Aδe−A(t−s)A−δB(πm(z(s)))ds+

t∫
0

e−A(t−s)Fu(s)ds

+

t∫
0

e−A(t−s)G(z(s))dL(s). (13)
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First, we prove that Φm maps ZT into itself. We define for every z ∈ ZT , all t ∈ [0, T ] and P-a.s.

ψ1(t) = e−Atξ, ψ2(z)(t) =

t∫
0

Aδe−A(t−s)A−δB(πm(z(s)))ds,

ψ3(t) =

t∫
0

e−A(t−s)Fu(s)ds, ψ4(z)(t) =

t∫
0

e−A(t−s)G(z(s))dL(s).

Recall that
∥∥e−At∥∥L(H)

≤ 1 for all t ≥ [0, T ]. Due to Lemma 2.2, the process (ψ1(t))t∈[0,T ] takes values in
D(Aα) and we have

E sup
t∈[0,T ]

‖ψ1(t)‖2D(Aα) = E
∥∥e−AtAαξ∥∥2

H
≤ E‖ξ‖2D(Aα).

By Lemma 2.2, Lemma 2.5 and Lemma 4.4, the process (ψ2(z)(t))t∈[0,T ] takes values inD(Aα) and there exists
a constant c1 > 0 such that

E sup
t∈[0,T ]

‖ψ2(z)(t)‖2D(Aα) ≤ E sup
t∈[0,T ]

 t∫
0

∥∥∥Aα+δe−A(t−s)A−δB(πm(z(s)))
∥∥∥
H
ds

2

≤ c1 E sup
t∈[0,T ]

‖πm(z(t))‖4D(Aα)

≤ c1m2 E sup
t∈[0,T ]

‖z(t)‖2D(Aα) .

Recall that the operator F : D(Aβ)→ D(Aβ) is linear and bounded. Using Lemma 2.2 and the Cauchy-Schwarz
inequality, the process (ψ3(t))t∈[0,T ] takes values in D(Aα) and there exists a constant c2 > 0 such that

E sup
t∈[0,T ]

‖ψ3(t)‖2D(Aα) ≤ E sup
t∈[0,T ]

 t∫
0

∥∥∥Aα−βe−A(t−s)AβFu(s)
∥∥∥
H
ds

2

≤ c2 E
T∫

0

‖u(t)‖2D(Aβ) dt. (14)

Due to Lemma 2.2 and inequality (7), one can verify the assumptions of Proposition 3.10 with A = Aα. Hence,
the process (ψ4(z)(t))t∈[0,T ] takes values in D(Aα). Using additionally Proposition 3.11, there exists a constant
c3 > 0 such that

E sup
t∈[0,T ]

‖ψ4(z)(t)‖2D(Aα) = E sup
t∈[0,T ]

∥∥∥∥∥∥
t∫

0

e−A(t−s)AαG(z(s))dL(s)

∥∥∥∥∥∥
2

H

≤ c3

(
1 + E sup

t∈[0,T ]

‖z(t)‖2D(Aα)

)
.

Hence, we can conclude that for fixed z ∈ ZT , the processes (Φm(z)(t))t∈[0,T ] takes values in D(Aα) such
that E supt∈[0,T ] ‖Φm(z)(t)‖2D(Aα) < ∞. To obtain that there exists a predictable version of (Φm(z)(t))t∈[0,T ]

for fixed z ∈ ZT , we need the continuity in probability. Here, we show that the process (Φm(z)(t))t∈[0,T ] is
continuous in mean square for fixed z ∈ ZT , which is a stronger formulation of continuity. In what follows, we
assume w.l.o.g. 0 ≤ t0 ≤ t ≤ T . By Lemma 2.2, we have

E ‖ψ1(t)− ψ1(t0)‖2D(Aα) = E
∥∥∥(e−A(t−t0) − I

)
e−At0Aαξ

∥∥∥2

H
.
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From Lemma 2.2, Lemma 2.5 and Lemma 4.4, there exists a constant c̃1 > 0 such that

E ‖ψ2(z)(t)− ψ2(z)(t0)‖2D(Aα)

≤ 2 E

∥∥∥∥∥∥
t0∫

0

(
e−A(t−t0) − I

)
Aα+δe−A(t0−s)A−δB(πm(z(s)))ds

∥∥∥∥∥∥
2

H

+ 2 E

 t∫
t0

∥∥∥Aα+δe−A(t−s)A−δB(πm(z(s)))
∥∥∥
H
ds

2

≤ 2 E

∥∥∥∥∥∥
(
e−A(t−t0) − I

) t0∫
0

Aα+δe−A(t0−s)A−δB(πm(z(s)))ds

∥∥∥∥∥∥
2

H

+ c̃1(t− t0)2−2α−2δ E sup
t∈[0,T ]

‖z(t)‖2D(Aα) .

Due to Lemma 2.2 and the Cauchy-Schwarz inequality, there exists a constant c̃2 > 0 such that

E ‖ψ3(t)− ψ3(t0)‖2D(Aα)

≤ 2 E

∥∥∥∥∥∥
t0∫

0

(
e−A(t−t0) − I

)
Aα−βe−A(t0−s)AβFu(s)ds

∥∥∥∥∥∥
2

H

+ 2 E

 t∫
t0

∥∥∥Aα−βe−A(t−s)AβFu(s)
∥∥∥
H
ds

2

≤ 2 E

∥∥∥∥∥∥
(
e−A(t−t0) − I

) t0∫
0

Aα−βe−A(t0−s)AβFu(s)ds

∥∥∥∥∥∥
2

H

+ c̃2(t− t0)1+2β−2α E
T∫

0

‖u(t)‖2D(Aβ) dt.

Let (ei)i∈N be an orthonormal basis in H . Using Lemma 2.2, equation (3), inequality (7) and Lebesgue’s mono-
tone convergence theorem, there exists a constant c̃3 > 0 such that

E ‖ψ4(z)(t)− ψ4(z)(t0)‖2D(Aα)

≤ 2 E

∥∥∥∥∥∥
t0∫

0

(
e−A(t−t0) − I

)
e−A(t0−s)AαG(z(s))dL(s)

∥∥∥∥∥∥
2

H

+ 2 E

∥∥∥∥∥∥
t∫

t0

e−A(t−s)AαG(z(s))dL(s)

∥∥∥∥∥∥
2

H

≤ 2

∞∑
i=1

E
t0∫

0

∥∥∥(e−A(t−t0) − I
)
e−A(t0−s)AαG(z(s))Q1/2ei

∥∥∥2

H
ds

+ c̃3(t− t0)

(
1 + E sup

t∈[0,T ]

‖z(t)‖2D(Aα)

)
.
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Since limt→t0 ‖e−A(t−t0)h − h‖H = 0 holds for every h ∈ H and using Lebesgue’s dominated convergence
theorem, we can infer that the processes (ψ1(t))t∈[0,T ], (ψ2(z)(t))t∈[0,T ], (ψ3(t))t∈[0,T ] and (ψ4(z)(t))t∈[0,T ] are
mean square continuous for fixed z ∈ ZT . Hence, the process (Φm(z)(t))t∈[0,T ] is continuous in mean square
for fixed z ∈ ZT . Therefore, we get the continuity in probability and by Lemma 3.9, there exists a predictable
version. Thus, we can conclude that Φm maps ZT into itself.

Next, we show that Φm is a contraction on ZT . Let T1,m ∈ (0, T ]. Using Lemma 2.2, Corollary 2.6 and
Lemma 4.4, there exists a constant C1 > 0 such that for every z1, z2 ∈ ZT

E sup
t∈[0,T1,m]

‖ψ2(z1)(t)− ψ2(z2)(t)‖2D(Aα)

≤ E sup
t∈[0,T1,m]

 t∫
0

∥∥∥Aα+δe−A(t−s)A−δ [B(πm(z1(s)))−B(πm(z2(s)))]
∥∥∥
H
ds

2

≤ C1m
2T 2−2α−2δ

1,m E sup
t∈[0,T1,m]

‖z1(t)− z2(t)‖2D(Aα) . (15)

By Proposition 3.11 and inequality (8), there exists a constant C2 > 0 such that for every z1, z2 ∈ ZT

E sup
t∈[0,T1,m]

‖ψ4(z1)(t)− ψ4(z2)(t)‖2D(Aα)

= E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

e−A(t−s)Aα [G(z1(s))−G(z2(s))] dL(s)

∥∥∥∥∥∥
2

H

≤ C2T1,m E sup
t∈[0,T1,m]

‖z1(t)− z2(t)‖2D(Aα) . (16)

Consequently, we obtain for every z1, z2 ∈ ZT

E sup
t∈[0,T1,m]

‖Φm(z1)(t)− Φm(z2)(t)‖2D(Aα) ≤ K1,m E sup
t∈[0,T1,m]

‖z1(t)− z2(t)‖2D(Aα) ,

where K1,m = 2C1m
2T 2−2α−2δ

1,m + 2C2T1,m. We chose T1,m ∈ (0, T ] such that K1,m < 1. Applying the
Banach fixed point theorem, we get a unique element ym ∈ ZT such that for all t ∈ [0, T1,m] and P-a.s.
ym(t) = Φm(ym)(t). Next, we consider for every z ∈ ZT , all t ∈ [T1,m, T ] and P-a.s.

Φm(z)(t) = e−A(t−T1,m)ym(T1,m)−
t∫

T1,m

Aδe−A(t−s)A−δB(πm(z(s)))ds

+

t∫
T1,m

e−A(t−s)Fu(s)ds+

t∫
T1,m

e−A(t−s)G(z(s))dL(s).

Again, we find T2,m ∈ [T1,m, T ] such that there exists a unique fixed point of the map Φm on the time interval
[T1,m, T2,m]. By continuing this method, we get the existence and uniqueness of a mild solution (ym(t))t∈[0,T ]

to system (11) satisfying for all t ∈ [0, T ] and P-a.s. ym(t) = Φm(ym)(t).

Theorem 4.7 Let the parameters α ∈ (0, 1), β ∈ [0, α] and δ ∈ [0, 1) be as in Theorem 4.6 and let u ∈ U
be fixed. Then for any ξ ∈ L2(Ω;D(Aα)), there exists a unique local mild solution (y(t))t∈[0,τ) of system (6).
Moreover, the process (y(t))t∈[0,τ) is mean square continuous in D(Aα).

P r o o f. By Theorem 4.6, there exists a unique mild solution (ym(t))t∈[0,T ] to system (11), which is mean
square continuous. Moreover, the process (ym(t))t∈[0,T ] has a càdlàg modification, see [37, Theorem 9.24]. We
still denote this modification by (ym(t))t∈[0,T ]. Next, we define a sequence of stopping times (τm)m∈N0

by

τm = inf{t ∈ (0, T ) : ‖ym(t)‖D(Aα) > m} ∧ T, (17)
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where we declare inf ∅ = +∞. Due to the definition of the map πm given by (10) and equation (12), we obtain
for fixed m ∈ N0, all t ∈ [0, T ] and P-a.s.

ym(t ∧ τm) = e−A(t∧τm)ξ −
t∧τm∫
0

Aδe−A(t∧τm−s)A−δB(ym(s))ds+

t∧τm∫
0

e−A(t∧τm−s)Fu(s)ds

+

t∧τm∫
0

e−A(t∧τm−s)G(ym(s))dL(s).

Since the sequence of stopping times (τm)m∈N0
is increasing and bounded, there exists a stopping time τ such

that τ = limm→∞ τm. Moreover, we have P-a.s. 0 < τ ≤ T . We set for each m ∈ N0, all t ∈ [0, τm) and P-a.s.

y(t) = ym(t). (18)

Then the process (y(t))t∈[0,τ) is the unique local mild solution of system (6).

To finish this section, we give some remarks about the local mild solution of system (6).
Remark 4.8 Note that the previous theorem is especially valid for n = 2 and n = 3. Hence, we get the

existence and uniqueness of a solution to the stochastic Navier-Stokes equations for two-dimensional as well as
three-dimensional domains up to a certain stopping time.

Remark 4.9 In contrast to the theory introduced in this section, one can also define a weak or a martingale
solution to system (6), see [10, 11, 16]. For the case of a Wiener noise, we also refer to [8, 9, 12–15]. For these
definitions, it is required that the solution takes values in the space V introduced in Section 2. It is well known
that V = D(A1/2), see [2, 10, 28]. In this paper, the local mild solution of system (6) takes values in D(Aα)
with α ∈ (0, 1) and we have D(A1/2) ⊂ D(Aα) for α ∈ (0, 1

2 ) by Lemma 2.2. Thus, we constructed a solution
well defined on a larger space, which is the main advantage of this approach. One may obtain that the local mild
solution of system (6) is equivalent to a weak solution for the case α = 1

2 .
Remark 4.10 (i) In case of additive noise in system (6), i.e. G(y) ≡ G, we have

E sup
t∈[0,ρ]

‖y(t)‖2D(Aα) <∞

for a certain stopping time ρ with values in [0, T ] and independent of m ∈ N0. The idea of the proof may be
found in [19, 20].
(ii) If, in addition to the assumptions of Theorem 4.7, we require

E sup
t∈[0,τ)

t∫
0

(t− s)−n/4|∇y(s)|ds <∞

and the Lévy process is given by a Q-Wiener process, then the solution of system (6) is a global mild solution in
the sense that P(τ = T ) = 1, see [18].

5 Existence and Uniqueness of Optimal Controls

Throughout this section, let the parameters α ∈ (0, 1), δ ∈ [0, 1) and β ∈ [0, α] be as in Theorem 4.6 and
let the initial value ξ ∈ L2(Ω;D(Aα)) be fixed. Moreover, let us denote the mild solution of system (11) by
(ym(t;u))t∈[0,T ] and the local mild solution of system (6) by (y(t;u))t∈[0,τu) to illustrate the dependence on the
control u ∈ U . Notice that the stopping times (τum)m∈N0

defined by (17) and the stopping time τu depend on the
control u ∈ U as well. Here, we consider the following cost functional for fixed m ∈ N0 and γ ∈ [0, α]:

Jm(u) =
1

2
E
τum∫
0

‖Aγ(y(t;u)− yd(t))‖2H dt+
1

2
E

T∫
0

‖Aβu(t)‖2Hdt, (19)
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where yd ∈ L2([0, T ];D(Aγ)) is a given desired state and u ∈ U . The task is to find a control um ∈ U such that

Jm(um) = inf
u∈U

Jm(u). (20)

The control um ∈ U is called an optimal control. Note that for γ = 0, the formulation coincides with the
tracking problem, for more details see [23–26]. For γ = 1

2 and yd ≡ 0, we minimize the enstrophy, see [2,27,28].
Hence, we are dealing with a generalized cost functional, which incorporates common control problems in fluid
dynamics.

Remark 5.1 (i) Note that due to the definition of the local mild solution, we only can ensure that the first
addend of the cost functional given by (19) is well defined up to the stopping time τum for fixed m ∈ N0.
(ii) In case of additive noise in system (6), we can replace the stopping τum in equation (19) by a certain stopping
time ρu independent of m ∈ N0.
(iii) If the assumptions of Remark 4.10 (ii) are fulfilled, then we can replace the stopping time τum in equation
(19) by the deterministic terminal point of time T .

Next, we state the main result of this section.

Theorem 5.2 Let the functional Jm(u) be given by (19) for fixed m ∈ N0 and arbitrary u ∈ U . Then there
exists a unique optimal control um ∈ U .

In the remaining part of this section, we give a proof of this result. Since the state as well as the stopping times
are non-convex with respect to the control, we formulated a control problem using a non-convex cost functional.
Therefore, we cannot prove the existence and uniqueness of the optimal control um ∈ U by well-known results
for convex optimization problems. Here, we apply a result provided in [1, 43]. For that purpose, we have to
show that the cost functional is semi-continuous. In the following lemma, we prove that the state as well as the
stopping times are continuous with respect to the control.

Lemma 5.3 For fixed m ∈ N0, let (ym(t;u))t∈[0,T ] be the mild solution of system (11) corresponding to the
control u ∈ U . Then there exists a constant K > 0 such that for every u1, u2 ∈ U :

E sup
t∈[0,T ]

‖ym(t;u1)− ym(t;u2)‖2D(Aα) ≤ K E
T∫

0

‖u1(t)− u2(t)‖2D(Aβ) dt.

P r o o f. Let m ∈ N0 be fixed and let T1,m ∈ (0, T ]. Similarly to inequalities (14), (15) and (16), we obtain
for every u1, u2 ∈ U

E sup
t∈[0,T1,m]

‖ym(t;u1)− ym(t;u2)‖2D(Aα)

≤ 3 E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

e−A(t−s)F [u1(s)− u2(s)]ds

∥∥∥∥∥∥
2

D(Aα)

+ 3 E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

Aδe−A(t−s)A−δ [B(πm(ym(s;u1)))−B(πm(ym(s;u2)))] ds

∥∥∥∥∥∥
2

D(Aα)

+ 3 E sup
t∈[0,T1,m]

∥∥∥∥∥∥
t∫

0

e−A(t−s) [G(ym(s;u1))−G(ym(s;u2))] dL(s)

∥∥∥∥∥∥
2

D(Aα)

≤ 3c2 E
T∫

0

‖u1(t)− u2(t)‖2D(Aβ) dt+K1,m E sup
t∈[0,T1,m]

‖ym(t;u1)− ym(t;u2)‖2D(Aα) ,
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where K1,m = 3C1m
2T 2−2α−2δ

1,m + 3C2T1,m. We choose the point of time T1,m ∈ (0, T ] such that K1,m < 1.
Hence, we have for every u1, u2 ∈ U

E sup
t∈[0,T1,m]

‖ym(t;u1)− ym(t;u2)‖2D(Aα) ≤ c1,m E
T∫

0

‖u1(t)− u2(t)‖2D(Aβ) dt,

where c1,m = 3c3
1−K1,m

. Next, we consider for all t ∈ [T1,m, T ], P-a.s. and for i = 1, 2

ym(t;ui) = e−A(t−T1,m)ym(T1,m;ui)−
t∫

T1,m

Aδe−A(t−s)A−δB(πm(ym(s;ui)))ds

+

t∫
T1,m

e−A(t−s)Fui(s)ds+

t∫
T1,m

e−A(t−s)G(ym(s;ui))dL(s).

Again, we find T2,m ∈ [T1,m, T ] such that for every u1, u2 ∈ U

E sup
t∈[T1,m,T2,m]

‖ym(t;u1)− ym(t;u2)‖2D(Aα) ≤ c2,m E
T∫

0

‖u1(t)− u2(t)‖2D(Aβ) dt,

where c > 0 is a constant. Therefore, there exist points of time such that 0 = T0,m < T1,m < ... < Tl,m = T
and we have for j = 1, ..., l

E sup
t∈[Tj−1,m,Tj,m]

‖ym(t;u1)− ym(t;u2)‖2D(Aα) ≤ cj,m E
T∫

0

‖u1(t)− u2(t)‖2D(Aβ) dt,

where cj,m > 0 is a constant. Hence, we get

E sup
t∈[0,T ]

‖ym(t;u1)− ym(t;u2)‖2D(Aα) ≤
l∑

j=1

E sup
t∈[Tj−1,m,Tj,m]

‖ym(t;u1)− ym(t;u2)‖2D(Aα)

≤ K E
T∫

0

‖u1(t)− u2(t)‖2D(Aβ) dt,

where K =
∑l
j=1 cj,m.

Lemma 5.4 For fixed m ∈ N0, let (ym(t;u))t∈[0,T ] be the mild solution of system (11) corresponding to the
control u ∈ U and let the stopping time τum be defined by (17). Then we have

lim
u1→u2

P (τu1
m 6= τu2

m ) = 0,

where u1 → u2 is in the sense that E
∫ T

0
‖u1(t)− u2(t)‖2D(Aβ) dt→ 0.

P r o o f. By the extended version of Markov’s inequality, and Lemma 5.3, we get for all ε > 0

P

(
sup
t∈[0,T ]

‖ym(t;u1))− ym(t;u2)‖D(Aα) ≥ ε

)
≤ 1

ε2
E sup
t∈[0,T ]

‖ym(t;u1))− ym(t;u2)‖2D(Aα)

≤ K

ε2
E

T∫
0

‖u1(t)− u2(t)‖2D(Aβ) dt. (21)
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Next, we assume limu1→u2
P (τu1

m < τu2
m ) > 0. Due to the definition of the stopping times, we can conclude

lim
u1→u2

P
(
{‖ym(τu1

m ;u1)‖D(Aα) > m} ∩ {‖ym(τu1
m ;u2)‖D(Aα) ≤ m}

)
> 0.

Therefore, there exists ε0 > 0 such that

lim
u1→u2

P
(
‖ym(τu1

m ;u1)‖D(Aα) − ‖ym(τu1
m ;u2)‖D(Aα) ≥ ε0

)
> 0.

This implies limu1→u2
P
(
‖ym(τu1

m ;u1)− ym(τu1
m ;u2)‖D(Aα) ≥ ε0

)
> 0, which is a contradiction to (21).

Hence, we get limu1→u2 P (τu1
m < τu2

m ) = 0. Similarly, we obtain limu1→u2 P (τu1
m > τu2

m ) = 0.

Lemma 5.5 Let yd ∈ L2([0, T ];D(Aγ)) be fixed. Moreover, let (y(t;u))t∈[0,τu) be the local mild solution of
system (6) corresponding to the control u ∈ U , where the stopping times (τum)m∈N0 are defined by (17). Then for
fixed m ∈ N0, the functional

fm(u) = E
τum∫
0

‖Aγ(y(t;u)− yd(t))‖2H dt

is continuous with respect to the control u ∈ U .

P r o o f. Let the process (ym(t;u))t∈[0,T ] be the mild solution of system (11) corresponding to the control
u ∈ U and let u1, u2 ∈ U . We define the stopping times τm = τu1

m ∧ τu2
m and τm = τu1

m ∨ τu2
m , and let the control

u ∈ U be given by

u =

{
u1 if τm = τu1

m ,

u2 if τm = τu2
m .

Using Lemma 2.2, equation (18), and the Cauchy-Schwarz inequality, there exists a constant K̃ > 0 such that

|fm(u1)− fm(u2)| =

∣∣∣∣∣∣∣E
τu1m∫
0

‖Aγ(ym(t;u1)− yd(t))‖2H dt− E
τu2m∫
0

‖Aγ(ym(t;u2)− yd(t))‖2H dt

∣∣∣∣∣∣∣
≤ E

τm∫
0

∣∣∣‖Aγ(ym(t;u1)− yd(t))‖2H − ‖A
γ(ym(t;u2)− yd(t))‖2H

∣∣∣ dt
+ E

τm∫
τm

‖Aγ(ym(t;u)− yd(t))‖2H dt

≤ K̃

(
E sup
t∈[0,T ]

‖ym(t;u1)− ym(t;u2)‖2D(Aα)

)1/2

+ 2

T∫
0

P(τu1
m ∧ τu2

m ≤ t < τu1
m ∨ τu2

m )
(
C2m2 + ‖yd(t))‖2D(Aγ)

)
dt.

Due to Lemma 5.3, we have limu1→u2 E supt∈[0,T ] ‖ym(t;u1)− ym(t;u2)‖2D(Aα) = 0. By Lemma 5.4, we get
limu1→u2

P(τu1
m ∧ τu2

m ≤ t < τu1
m ∨ τu2

m ) = 0. Using Lebesgue’s dominated convergence theorem, we obtain

lim
u1→u2

|fm(u1)− fm(u2)| = 0.

Hence, the functional fm(u) is continuous with respect to the control u ∈ U .
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To find a unique optimal control um ∈ U satisfying (20), we use the following result.
Proposition 5.6 (cf. [1,43]) Let B be a uniformly convex Banach space and let V ⊂ B be bounded and closed.

Moreover, let f : V → R∪{−∞,∞} be a lower semi-continuous functional, which is bounded from below. Then
there exists a dense subset V0 ⊂ V such that for any v ∈ V0 and any q ≥ 1 the functional f(u) + ‖u − v‖qB
attains its minimum over V , i.e. there exists u(v) ∈ V such that

f(u(v)) + ‖u(v)− v‖qB = inf
u∈V

(f(u) + ‖u− v‖qB) .

If q > 1, then u(v) is unique. Furthermore, the function v 7→ u(v) is continuous.
We are now able to prove the existence and uniqueness of the optimal controls.

Proof of Theorem 5.2. The space L2(Ω;L2([0, T ];D(Aβ))) is a Hilbert space and thus, a uniformly convex
Banach space. Moreover, the set of admissible controls U is a subset of the space L2(Ω;L2([0, T ];D(Aβ))) and
by definition bounded and closed. Due to Lemma 5.5, the functional

fm(u) = E
τum∫
0

‖Aγ(y(t;u)− yd(t))‖2H dt

is lower semi-continuous and we have fm(u) ≥ 0 for every u ∈ U . Applying Proposition 5.6, we get the exis-
tence of a dense subset V0 ⊂ U such that for any v ∈ V0 the functional 1

2 fm(u) + 1
2 ‖u− v‖

2
L2(Ω;L2([0,T ];D(Aβ))

attains its minimum over U . We denote the minimum by um(v) ∈ U and due to Proposition 5.6, it is unique and
continuous with respect to v ∈ V0. Since V0 is a dense subset of U , there exists a sequence (vk)k∈N ⊂ V0 such
that limk→∞ ‖vk‖L2(Ω;L2([0,T ];D(Aβ))) = 0. We define um = limk→∞ um(vk). Due to the continuity properties,
we get

Jm(um) = lim
k→∞

(
1

2
fm(um(vk)) +

1

2
‖um(vk)− vk‖2L2(Ω;L2([0,T ];D(Aβ)))

)
= lim
k→∞

inf
u∈U

(
1

2
fm(u) +

1

2
‖u− vk‖2L2(Ω;L2([0,T ];D(Aβ)))

)
= inf
u∈U

(
1

2
fm(u) +

1

2
‖u‖2L2(Ω;L2([0,T ];D(Aβ)))

)
= inf
u∈U

Jm(u).

Therefore, we get the existence and uniqueness of the optimal control um ∈ U satisfying (20).

Remark 5.7 Here, we analyze the cost functional Jm(·) given by (19) for m ∈ N0. Therefore, the optimal
controls um ∈ U also depend on m ∈ N0 and we get a sequence of optimal controls. Note that the initial aim
is to control the stochastic Navier-Stokes equations in a desired way. Thus, it is reasonable to design an optimal
control u ∈ U independent of m ∈ N0 but still linked to the optimal control um ∈ U for each m ∈ N0, for
instance u(t) = um(t) for almost all t ∈ [0, τm) in some sense.

6 Conclusions

In this paper, we have considered the controlled multidimensional stochastic Navier-Stokes equations on bounded
domains with multiplicative Lévy noise. Under certain conditions on the parameters, we proved the existence and
uniqueness of the state in the sense of a local mild solution. A global mild solution can be obtained by additional
assumptions. The cost functional introduced in this paper is motivated by common control problems of the
Navier-Stokes equations. We proved continuity results for the state as well as for the stopping times with respect
to the control to infer the continuity of the cost functional. Finally, we obtained the existence and uniqueness of
optimal controls based on [1].

In future work, we will derive necessary and sufficient optimality conditions optimal controls have to satisfy.
Therefore, we will derive explicit formulas for the optimal controls.
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