792 research outputs found

    Comparison of thermal performance of different wall structures

    Get PDF
    Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.This study deals with comparison of thermal performance of six different wall structures for a south-facing wall. Numerical model based on an implicit finite difference method under steady periodic conditions is used to determine of heat transmission loads of multilayer walls. For this purpose, the outside surface of the wall is exposed to periodic solar radiation and outdoor environmental temperature. The inside surface is exposed to room air maintained at constant indoor design temperature. Building walls made of brick, concrete and ytong are performed for uninsulated and insulated wall structures. The investigation is carried out for July 21 and January 21 chosen to represent typical summer and winter conditions in Ä°zmir, Turkey. Expanded polystyrene (EPS) as insulation material is selected. It is seen that the maximum temperature swings in both summer and winter occur for the wall made with concrete while minimum temperature swings occur for ytong wall. Besides, insulated wall significantly reduces peak load and load fluctuations at inside surface, compared with uninsulated wall. Results show that time lag of ytong wall without insulation is obtained as 12.95 h while time lags of brick and concrete walls with 10 cm EPS insulation are obtained as 8.35 h and 7.47 h, respectively. Results also show that peak load of ytong wall without insulation is equal peak load when brick and concrete walls are insulated with EPS at 4.25 cm and 4.75 cm thicknesses, respectively.dc201

    The millisecond pulsar mass distribution: Evidence for bimodality and constraints on the maximum neutron star mass

    Full text link
    The mass function of neutron stars (NSs) contains information about the late evolution of massive stars, the supernova explosion mechanism, and the equation-of-state of cold, nuclear matter beyond the nuclear saturation density. A number of recent NS mass measurements in binary millisecond pulsar (MSP) systems increase the fraction of massive NSs (with M>1.8M > 1.8 M⊙_{\odot}) to ∼20%\sim 20\% of the observed population. In light of these results, we employ a Bayesian framework to revisit the MSP mass distribution. We find that a single Gaussian model does not sufficiently describe the observed population. We test alternative empirical models and infer that the MSP mass distribution is strongly asymmetric. The diversity in spin and orbital properties of high-mass NSs suggests that this is most likely not a result of the recycling process, but rather reflects differences in the NS birth masses. The asymmetry is best accounted for by a bimodal distribution with a low mass component centred at 1.393−0.029+0.0311.393_{-0.029}^{+0.031} M⊙_{\odot} and dispersed by 0.064−0.025+0.0640.064_{-0.025}^{+0.064} M⊙_{\odot}, and a high-mass component with a mean of 1.807−0.132+0.0811.807_{-0.132}^{+0.081} and a dispersion of 0.177−0.072+0.1150.177_{-0.072}^{+0.115} M⊙_{\odot}. We also establish a lower limit of Mmax≥2.018M_{max} \ge 2.018 M⊙_{\odot} at 98% C.L. for the maximum NS mass, from the absence of a high-mass truncation in the observed masses. Using our inferred model, we find that the measurement of 350 MSP masses, expected after the conclusion of pulsar surveys with the Square-Kilometre Array, can result in a precise localization of a maximum mass up to 2.15 M⊙_{\odot}, with a 5% accuracy. Finally, we identify possible massive NSs within the known pulsar population and discuss birth masses of MSPs.Comment: submitted to ApJ; 21 pages in aastex6 two-column format, 12 figures, 5 tables. Comments are welcom

    Effects of wall orientation and thermal insulation on time lag and decrement factor

    Get PDF
    Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.In this study, effect of wall orientation on time lag and decrement factor is investigated numerically using an implicit finite difference method under steady periodic conditions. The investigation is carried out for three different insulation materials in the climatic conditions of Istanbul, Turkey. For this purpose, the outside surface of the wall is exposed to periodic solar radiation and outdoor environmental temperature. The inside surface is exposed to room air maintained at constant indoor design temperature. The insulation is placed at outside of wall. It is seen that as expected, as the insulation thickness increases, decrement factor decreases while time lag increases. Results show that wall orientation has a great effect on time lag while it has a small effect on decrement factor. It is seen that maximum time lag and minimum decrement factor are obtained in an east oriented wall.dc201

    Photon Propagation Around Compact Objects and the Inferred Properties of Thermally Emitting Neutron Stars

    Get PDF
    Anomalous X-ray pulsars, compact non-pulsing X-ray sources in supernova remnants, and X-ray bursters are three distinct types of sources for which there are viable models that attribute their X-ray emission to thermal emission from the surface of a neutron star. Inferring the surface area of the emitting regions in such systems is crucial in assessing the viability of different models and in providing bounds on the radii of neutron stars. We show that the inferred areas of the emitting regions may be over- or under-estimated by a factor of <=2, because of the geometry of the system and general relativistic light deflection, combined with the effects of phase averaging. Such effects make the determination of neutron-star radii uncertain, especially when compared to the ~5% level required for constraining the equation of state of neutron-star matter. We also note that, for a given spectral shape, the inferred source luminosities and pulse fractions are anticorrelated because they depend on the same properties of the emitting regions, namely their sizes and orientations, i.e., brighter sources have on average weaker pulsation amplitudes than fainter sources. We argue that this property can be used as a diagnostic tool in distinguishing between different spectral models. As an example, we show that the high inferred pulse fraction and brightness of the pulsar RXS J1708-40 are inconsistent with isotropic thermal emission from a neutron-star surface. Finally, we discuss the implication of our results for surveys in the soft X-rays for young, cooling neutron stars in supernova remnants and show that the absence of detectable pulsations from the compact source at the center of Cas A (at a level of >=30%) is not a strong argument againts its identification with a spinning neutron star.Comment: 6 pages, 6 figures, to appear in the Astrophysical Journal; minor change

    Phase diagram of neutron-rich nuclear matter and its impact on astrophysics

    Full text link
    Dense matter as it can be found in core-collapse supernovae and neutron stars is expected to exhibit different phase transitions which impact the matter composition and equation of state, with important consequences on the dynamics of core-collapse supernova explosion and on the structure of neutron stars. In this paper we will address the specific phenomenology of two of such transitions, namely the crust-core solid-liquid transition at sub-saturation density, and the possible strange transition at super-saturation density in the presence of hyperonic degrees of freedom. Concerning the neutron star crust-core phase transition at zero and finite temperature, it will be shown that, as a consequence of the presence of long-range Coulomb interactions, the equivalence of statistical ensembles is violated and a clusterized phase is expected which is not accessible in the grand-canonical ensemble. A specific quasi-particle model will be introduced to illustrate this anomalous thermodynamics and some quantitative results relevant for the supernova dynamics will be shown. The opening of hyperonic degrees of freedom at higher densities corresponding to the neutron stars core modifies the equation of state. The general characteristics and order of phase transitions in this regime will be analyzed in the framework of a self-consistent mean-field approach.Comment: Invited Talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Stability window and mass-radius relation for magnetized strange quark stars

    Full text link
    The stability of magnetized strange quark matter (MSQM) is investigated within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. We obtain that the energy per baryon decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM. This implies that MSQM is more stable than non-magnetized SQM. Furthermore, the stability window of MSQM is found to be wider than the corresponding one of SQM. The mass-radius relation for magnetized strange quark stars is also derived in this framework.Comment: 12 pages, 6 figures, 3 table

    Replication and exploratory analysis of 24 candidate risk polymorphisms for neural tube defects.

    Get PDF
    BackgroundNeural tube defects (NTDs), which are among the most common congenital malformations, are influenced by environmental and genetic factors. Low maternal folate is the strongest known contributing factor, making variants in genes in the folate metabolic pathway attractive candidates for NTD risk. Multiple studies have identified nominally significant allelic associations with NTDs. We tested whether associations detected in a large Irish cohort could be replicated in an independent population.MethodsReplication tests of 24 nominally significant NTD associations were performed in racially/ethnically matched populations. Family-based tests of fifteen nominally significant single nucleotide polymorphisms (SNPs) were repeated in a cohort of NTD trios (530 cases and their parents) from the United Kingdom, and case-control tests of nine nominally significant SNPs were repeated in a cohort (190 cases, 941 controls) from New York State (NYS). Secondary hypotheses involved evaluating the latter set of nine SNPs for NTD association using alternate case-control models and NTD groupings in white, African American and Hispanic cohorts from NYS.ResultsOf the 24 SNPs tested for replication, ADA rs452159 and MTR rs10925260 were significantly associated with isolated NTDs. Of the secondary tests performed, ARID1A rs11247593 was associated with NTDs in whites, and ALDH1A2 rs7169289 was associated with isolated NTDs in African Americans.ConclusionsWe report a number of associations between SNP genotypes and neural tube defects. These associations were nominally significant before correction for multiple hypothesis testing. These corrections are highly conservative for association studies of untested hypotheses, and may be too conservative for replication studies. We therefore believe the true effect of these four nominally significant SNPs on NTD risk will be more definitively determined by further study in other populations, and eventual meta-analysis

    A statistical data-based approach to instability detection and wear prediction in radial turning processes

    Get PDF
    Radial turning forces for tool-life improvements are studied, with the emphasis on predictive rather than preventive maintenance. A tool for wear prediction in various experimental settings of instability is proposed through the application of two statistical approaches to process data on tool-wear during turning processes: three sigma edit rule analysis and Principal Component Analysis (PCA). A Linear Mixed Model (LMM) is applied for wear prediction. These statistical approaches to instability detection generate results of acceptable accuracy for delivering expert opinion. They may be used for on-line monitoring to improve the processing of different materials. The LMM predicted significant differences for tool wear when turning different alloys and with different lubrication systems. It also predicted the degree to which the turning process could be extended while conserving stability. Finally, it should be mentioned that tool force in contact with the material was not considered to be an important input variable for the model.The work was performed as a part of the HIMMOVAL (Grant Agreement Number: 620134) project within the CLEAN-SKY program, linked to the SAGE2 project for geared open-rotor development and the delivery of the demonstrator part. Funding through grant IT900-16 is also acknowledged from the Basque Government Department of Education, Universities and Research
    • …
    corecore