15 research outputs found

    GaMin’11 – an International Inter-laboratory Comparison for Geochemical CO2 - Saline Fluid - Mineral Interaction Experiments

    Get PDF
    Due to the strong interest in geochemical CO2-fluid-rock interaction in the context of geological storage of CO2 a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in composition of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies

    Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge

    Get PDF
    The effect of volcanic activity on submarine hydrothermal systems has been well documented along fast- and intermediate-spreading centers but not from slow-spreading ridges. Indeed, volcanic eruptions are expected to be rare on slow-spreading axes. Here we report the presence of hydrothermal venting associated with extremely fresh lava flows at an elevated, apparently magmatically robust segment center on the slow-spreading southern Mid-Atlantic Ridge near 5°S. Three high-temperature vent fields have been recognized so far over a strike length of less than 2 km with two fields venting phase-separated, vapor-type fluids. Exit temperatures at one of the fields reach up to 407°C, at conditions of the critical point of seawater, the highest temperatures ever recorded from the seafloor. Fluid and vent field characteristics show a large variability between the vent fields, a variation that is not expected within such a limited area. We conclude from mineralogical investigations of hydrothermal precipitates that vent-fluid compositions have evolved recently from relatively oxidizing to more reducing conditions, a shift that could also be related to renewed magmatic activity in the area. Current high exit temperatures, reducing conditions, low silica contents, and high hydrogen contents in the fluids of two vent sites are consistent with a shallow magmatic source, probably related to a young volcanic eruption event nearby, in which basaltic magma is actively crystallizing. This is the first reported evidence for direct magmatic-hydrothermal interaction on a slow-spreading mid-ocean ridge

    The taphonomic fate of isorenieratene in Lower Jurassic shales—controlled by iron?

    No full text
    Fossil derivatives of isorenieratene, an accessory pigment in brown‐colored green sulfur bacteria, are often used as tracers for photic zone anoxia through Earth's history, but their diagenetic behavior is still incompletely understood. Here, we assess the preservation of isorenieratene derivatives in organic‐rich shales (1.5–8.4 wt.% TOC) from two Lower Jurassic anoxic systems (BĂ€chental oil shale, Tyrol, Austria; Posidonia Shale, Baden‐WĂŒrttemberg, Germany). Bitumens and kerogens were investigated using catalytic hydropyrolysis (HyPy), closed‐system hydrous pyrolysis (in gold capsules), gas chromatography–mass spectrometry (GC–MS) and gas chromatography combustion isotope ratio‐mass spectrometry (GC‐C‐IRMS). Petrography and biomarkers indicate a syngenetic relationship between bitumens and kerogens. All bitumens contain abundant isorenieratane, diverse complex aromatized isorenieratene derivatives, and a pseudohomologous series of 2,3,6‐trimethyl aryl isoprenoids. In contrast, HyPy and mild closed‐system hydrous pyrolysis of the kerogens yielded only minor amounts of these compounds. Given the overall low maturity of the organic matter (below oil window), it appears that isorenieratene and its abundant derivatives from the bitumen had not been incorporated into the kerogens. Accordingly, sulfur cross‐linking, the key mechanism for sequestration of functionalized lipids into kerogens in anoxic systems, was not effective in the Jurassic environments studied. We explain this by (i) early cyclization/aromatization and (ii) hydrogenation reactions that have prevented effective sulfurization. In addition, (iii) sulfide was locally removed via anoxygenic photosynthesis and efficiently trapped by the reaction with sedimentary iron, as further indicated by elevated iron contents (4.0–8.7 wt.%) and the presence of abundant pyrite aggregates in the rock matrix. Although the combined processes have hampered the kerogen incorporation of isorenieratene and its derivatives, they may have promoted the long‐term preservation of these biomarkers in the bitumen fraction via early defunctionalization. This particular taphonomy of aromatic carotenoids has to be considered in studies of anoxic iron‐rich environments (e.g., the Proterozoic ocean)

    Water column anoxia, enhanced productivity, and concomitant changes in ÎŽ13C and ÎŽ34S across the Frasnian-Famennian boundary (Kowala - Holy Cross Mountains/Poland)

    No full text
    The investigation of the trace element and organic geochemistry of the Frasnian Famennian boundary section at Kowala (Holy Cross Mountains/Poland) shows that the lower water column was oxygen-deficient during late Frasnian and early Famennian times. The abundance and carbon isotopic composition of diaryl isoprenoids, biomarkers indicative for green sulfur bacteria, prove that euxinic waters reached into the photic zone, at least episodically. Total organic carbon (TOC) contents show two maxima that are time-equivalent to the Kellwasser horizons deposited in shallower water settings. Enhanced TOC concentrations are explained by a higher primary productivity, presumably as a consequence of an enhanced nutrient supply from the continent. The increase in the abundance of hopanes and bituminite suggests that the bacterial contribution to TOC increased at the Frasnian Famennian transition. The sulfur isotopic composition of pyritic- and organically bound sulfur shows a +27 excursion across the boundary. The observation that the 34S values of organic-bound sulfur closely resemble that of pyrite sulfur indicates a common sulfur source, likely early diagenetic sulfide. A change in the 13C of total dissolved inorganic carbon as a consequence of an enhanced burial of 12C-enriched organic carbon is indicated by a +3 excursion measured for TOC as well as for individual n-alkanes and isoprenoids. The burial of large amounts of organic carbon is expected to result in a decrease in pCO2 and should affect the photosynthetic carbon isotope fractionation (p). The fact that we observe no change in p can be explained by the circumstance that p was most probably at maximum values, as a consequence of high atmospheric and oceanic-dissolved CO2 concentrations during the Devonian
    corecore