7,847 research outputs found
Variational Approach to Gaussian Approximate Coherent States: Quantum Mechanics and Minisuperspace Field Theory
This paper has a dual purpose. One aim is to study the evolution of coherent
states in ordinary quantum mechanics. This is done by means of a Hamiltonian
approach to the evolution of the parameters that define the state. The
stability of the solutions is studied. The second aim is to apply these
techniques to the study of the stability of minisuperspace solutions in field
theory. For a theory we show, both by means of perturbation
theory and rigorously by means of theorems of the K.A.M. type, that the
homogeneous minisuperspace sector is indeed stable for positive values of the
parameters that define the field theory.Comment: 26 pages, Plain TeX, no figure
Derivative pricing under the possibility of long memory in the supOU stochastic volatility model
We consider the supOU stochastic volatility model which is able to exhibit
long-range dependence. For this model we give conditions for the discounted
stock price to be a martingale, calculate the characteristic function, give a
strip where it is analytic and discuss the use of Fourier pricing techniques.
Finally, we present a concrete specification with polynomially decaying
autocorrelations and calibrate it to observed market prices of plain vanilla
options
Atmospheric neutron measurements with the SONTRAC science model
–The SOlar Neutron TRACking (SONTRAC) telescope was originally developed to measure the energy spectrum and incident direction of neutrons produced in solar flares, in the energy range 20 - 250 MeV. While developed primarily for solar physics, the SONTRAC detector may be employed in virtually any application requiring both energy measurement and imaging capabilities. The SONTRAC Science Model (SM) is presently being operated at the University of New Hampshire (UNH) as a ground-based instrument to investigate the energy spectrum, zenith and azimuth angle dependence of the cosmic-ray induced sea-level atmospheric neutron flux. SONTRAC measurements are based on the non-relativistic double scatter of neutrons off ambient protons within a block of scintillating fibers. Using the n-p elastic double-scatter technique, it is possible to uniquely determine the neutron’s energy and direction on an event-by-event basis. The 3D SM consists of a cube of orthogonal plastic scintillating fiber layers with 5 cm sides, read out by two CCD cameras. Two orthogonal imaging chains allow full 3D reconstruction of scattered proton tracks
The role of well-child visits in detecting developmental delay in preschool children
Background: Early detection of developmental delay (DD) in preschool children is crucial for counselling parents, initiating diagnostic work-up, and starting early intervention (EI).
Methods: We conducted a register study of all preschool children referred for EI in the Canton of Zurich, Switzerland, in 2017 (N = 1,785) and used an online survey among primary care physicians (PCPs, N = 271) to evaluate the care service of DD children.
Results: PCPs accounted for 79.5% of all referrals by physicians and had correctly referred over 90% of the children in need of EI at an average age of 39.3 months (SD 8.9). In the survey, which represents 59.2% of all pediatricians and 11.3% of all general practitioners in the Canton, PCPs reported performing a mean of 13.5 (range 0-50, SD 10.7) well-child visits per week to preschool children and estimated well-child visits to be the most frequent type of consultation (66.7%) for the identification of DD. Parents' hesitancy in accepting further evaluation or support were reported by 88.7%.
Conclusions: Most preschool children with DD are identified in well-child visits. These visits represent an ideal opportunity for early detection of developmental impairment and initiation of EI. Carefully addressing parents' reservations could reduce the rate of refusal, thus improving early support for children with DD
On the Orbit Structure of the Logarithmic Potential
We investigate the dynamics in the logarithmic galactic potential with an
analytical approach. The phase-space structure of the real system is
approximated with resonant detuned normal forms constructed with the method
based on the Lie transform. Attention is focused on the properties of the axial
periodic orbits and of low order `boxlets' that play an important role in
galactic models. Using energy and ellipticity as parameters, we find analytical
expressions of several useful indicators, such as stability-instability
thresholds, bifurcations and phase-space fractions of some orbit families and
compare them with numerical results available in the literature.Comment: To appear on the Astrophysical Journa
Unravel the underlying mechanisms of delaying ripening techniques in grapevine
In a scenario of changing climate conditions, grapevine is significantly affected at multiple levels. Advancements in phenology and berry ripening, however, are the major dynamics of the generalized increase in average temperature and evaporative demand, negatively affecting berry quality and productivity. The aim of this work was to unravel the underlying mechanisms of bunch-zone auxin application (NAA; 1-Naphthaleneacetic acid) and source-limiting canopy management approaches in delaying berry ripening. In randomized block design experiments, control vines were compared to vines treated with NAA, subjected to apical-to-bunch defoliation or antitranspirant application (n=10-to-42 plants per treatment). Juice chemical analysis, berry ripening kinetics and physiological traits were monitored every week from pre-veraison over multiple vineyards, years (2021, 2022, 2023) and varieties (Chardonnay, Pinot gris, Syrah, Merlot). Overall, all the treatments delayed berry ripening, and in particular °Brix build up, by 7 to up 15 days. Opposite trends were observed for total acidity, particularly malic acid concentration that displayed a slower degradation kinetic post-veraison. Time course expression profile of ripening-associated transcription factors revealed a significant and consistent repression for VviNAC60, VviNAC33, VviBHLH75, VviWRKY19, VviERF45 following the application of delaying ripening techniques. Similarly, abscisic acid and Indole-3-acetic acid concentration in the berry were modulated by treatments, with specific variation for their free and conjugated forms. This work enlightens, for the first time, the mechanistic framework of berry ripening dynamics following specific treatments with different mechanisms of action and provides novel avenues to harmonize management approaches in grapevine in the context of climate change
Stochastic modeling of turbulent reacting flows
Direct numerical simulations of a single-step irreversible chemical reaction with non-premixed reactants in forced isotropic turbulence at R(sub lambda) = 63, Da = 4.0, and Sc = 0.7 were made using 128 Fourier modes to obtain joint probability density functions (pdfs) and other statistical information to parameterize and test a Fokker-Planck turbulent mixing model. Preliminary results indicate that the modeled gradient stretching term for an inert scalar is independent of the initial conditions of the scalar field. The conditional pdf of scalar gradient magnitudes is found to be a function of the scalar until the reaction is largely completed. Alignment of concentration gradients with local strain rate and other features of the flow were also investigated
A New Genus And Species Of Euptychiina (lepidoptera: Nymphalidae: Satyrinae) From Southern Brazil.
This paper describes a new genus and a new species of Euptychiina from open grassland habitats (campos de cima da serra) in southern Brazil. The systematic position of this new taxon is discussed based on morphological and molecular data, and it is considered sister to Taydebis Freitas. Since the campos vegetation is considered endangered due to anthropogenic activities, this butterfly species deserves attention and should be included in future conservation plans for this biome.40231-
- …