412 research outputs found

    Automatic Detection of Local Cloud Systems from MODIS Data

    Get PDF
    Abstract This paper describes an algorithm that is aimed at the identification of cloudy and clear pixels in Moderate-Resolution Imaging Spectroradiometer (MODIS) images to support earth science and nowcasting applications. The process from geolocated and calibrated data allows one to obtain cloud masks with four clear-sky confidence levels for five different cloud system types. The technique has been developed using the MODIS cloud-mask algorithm heritage, but the threshold tests performed have been executed without comparing solar reflectances and thermal brightness temperatures with thresholds determined in advance, but instead with thresholds carried out from classification methods. The main advantage of this technique is that the thresholds are obtained directly from the images. Seventy-five percent of the spectral signatures (known as end members) derived from the winter images in the detection of the various cloud types and 80% of the summer end members can be considered as being well discriminated. Furthermore, it seems that the end members characterizing the different cloud systems are constant throughout the various seasons of the year (they vary with a confidence level of 60%), whereas those describing clear sky change in a notable manner (the associated confidence level is 99%). The algorithm is able to produce cloud masks pertinent to limited regions at a mesoscale level, which may be a key factor for nowcasting purposes. This work shows that the use of end members and spectral angles, as opposed to spectral thresholds, should be carefully examined because of the fact that it might be simpler or that higher performances may be achieved at a regional scale

    The Relativistic Hopfield network: rigorous results

    Full text link
    The relativistic Hopfield model constitutes a generalization of the standard Hopfield model that is derived by the formal analogy between the statistical-mechanic framework embedding neural networks and the Lagrangian mechanics describing a fictitious single-particle motion in the space of the tuneable parameters of the network itself. In this analogy the cost-function of the Hopfield model plays as the standard kinetic-energy term and its related Mattis overlap (naturally bounded by one) plays as the velocity. The Hamiltonian of the relativisitc model, once Taylor-expanded, results in a P-spin series with alternate signs: the attractive contributions enhance the information-storage capabilities of the network, while the repulsive contributions allow for an easier unlearning of spurious states, conferring overall more robustness to the system as a whole. Here we do not deepen the information processing skills of this generalized Hopfield network, rather we focus on its statistical mechanical foundation. In particular, relying on Guerra's interpolation techniques, we prove the existence of the infinite volume limit for the model free-energy and we give its explicit expression in terms of the Mattis overlaps. By extremizing the free energy over the latter we get the generalized self-consistent equations for these overlaps, as well as a picture of criticality that is further corroborated by a fluctuation analysis. These findings are in full agreement with the available previous results.Comment: 11 pages, 1 figur

    A New Species of Cyclobulura (Nematoda: Subuluridae) from Zaedyus pichiy and Chaetophractus vellerosus (Xenarthra: Dasypodidae) in Argentina

    Get PDF
    Cyclobulura superinae n. sp. collected from Zaedyus pichiy and Chaetophractus vellerosus is herein described as the second species in Cyclobulura Quentin, 1977, and the first subulurid in armadillos. The species is unique in the spur-like structures present at the tip of both spicules, yet they conform to the description of Cyclobulura in the structure of the buccal parts. Specimens of the new species show longer chordal lobes and more conspicuous radial lobes and are smaller than specimens of C. lainsoni. In addition, males of C. superinae exhibit a spur-like process in the distal end of the spicules and a shorter tail (170 vs. 300 µm) with no spine. Finally, the eggs of C. superinae are smaller (60-89 × 45-71 vs. 95-100 × 80-85). To our knowledge, the new species is the first subulurid nematode found in an armadillo

    New Variant of the Treatment of Acromion-Clavicular Dislocation With TightRope ® System in a Mini - Open Approach: A Preliminary Clinical Study

    Get PDF
    Background: Many different surgical techniques have been described to stabilize the acromion-clavicular (AC) dislocations. So far many of these procedures are performed only in arthroscopy. Objectives: In this study, we describe a new technique that utilizes the tightrope with a mini-invasive open approach for the acute stabilization of the acromion-clavicular joint (ACJ) dislocation. Patients and Methods: We set an prospective study aimed to verify the efficacy of this new surgical technique. We treated 28 patients with acute ACJ dislocation with ACJ TightRope ® System with dual mini access. We retrospectively reviewed the data of 34 patients treated with arthroscopic technique. They were considered as the control group. Results: At 6 month’s follow-up, all the 28 patients showed a stable joint during clinical examination and obtained an average Constant score of 98.62/100, with a complete recovery of ROM and strength in abduction. The mean operation time was of 33.7 minutes. The mean recovery duration was 102.8 days. No significant difference was found between the experimental and control groups (P > 0.05). Conclusions: Results of this trial suggest the effectiveness of this new mini-invasive surgical technique in producing clinical and functional recovery in patients with ACJ dislocations

    A Domain of the Gene 4 Helicase/Primase of Bacteriophage T7 Required for the Formation of an Active Hexamer

    Get PDF
    The bacteriophage T7 gene 4 protein, like a number of helicases, is believed to function as a hexamer. The amino acid sequence of the T7 gene 4 protein from residue 475 to 491 is conserved in the homologous proteins of the related phages T3 and SP6. In addition, part of this region is conserved in DNA helicases such as Escherichia coli DnaB protein and phage T4 gp41. Mutations within this region of the T7 gene 4 protein can reduce the ability of the protein to form hexamers. The His475-->Ala and Asp485-->Gly mutant proteins show decreases in nucleotide hydrolysis, single-stranded DNA binding, double-stranded DNA unwinding, and primer synthesis in proportion to their ability to form hexamers. The mutation Arg487-->Ala has little effect on oligomerization, but nucleotide hydrolysis by this mutant protein is inhibited by single-stranded DNA, and it has a higher affinity for dTTP, suggesting that this protein is defective in the protein-protein interactions required for efficient nucleotide hydrolysis and translocation on single-stranded DNA. Gene 4 protein can form hexamers in the absence of a nucleotide, but dTTP increases hexamer formation, as does dTDP, to a lesser extent, demonstrating that the protein self-association affinity is influenced by the nucleotide bound. Together, the data demonstrate that this region of the gene 4 protein is important for the protein-protein contacts necessary for both hexamer formation and the interactions between the subunits of the hexamer required for coordinated nucleotide hydrolysis, translocation on single-stranded DNA, and unwinding of double-stranded DNA. The fact that the gene 4 proteins form dimers, but not monomers, even while hexamer formation is severely diminished by some of the mutations, suggests that the proteins associate in a manner with two separate and distinct protein-protein interfaces

    SIR-C/X-SAR data calibration and ground truth campaign over the NASA-CB1 test-site

    Get PDF
    During the Space Shuttle Endeavour mission in October 1994, a remote-sensing campaign was carried out with the objectives of both radiometric and polarimetric calibration and ground truth data acquisition of bare soils. This paper presents the results obtained in the experiment. Polarimetric cross-talk and channel imbalance values, as well as radiometric calibration parameters, have been found to be within the science requirements for SAR images. Regarding ground truth measurements, a wide spread in the height rms values and correlation lengths has been observed, which has motivated a critical revisiting of surface parameters descriptors

    The current deglaciation of the Ortles-Cevedale massif (Eastern Italian Alps): impacts, controls and degree of imbalance.

    Get PDF
    The Ortles-Cevedale is the largest glacierized mountain group of the Italian Alps hosting 112 ice bodies, with a total area of 76.8 km2. Since the 1980\u2019s, this massif is undergoing a rapid deglaciation, as most of the mountain ranges in the European Alps. The aims of this work were: i) to quantify area and volume change of the Ortles- Cevedale glacier system from the 1980s to the 2000s; ii) to improve the knowledge of factors controlling the spatial variability of the deglaciation; and iii) to assess the degree of imbalance of individual glaciers with respect to the present climate conditions. Two inventories were created, based on Landsat5 TM scenes of 20-09-1987 and 31-08-2009. Contrast-enhanced composites (bands TM5, TM4 and TM3), aerial photos and field surveys (for the most recent period) were used to correct the automatic delineation of glaciers derived from a hard classification based on a threshold applied to a TM3/TM5 ratio image. Since Landsat scenes were acquired at the end of the ablation seasons and fresh snow was absent, the accumulation areas could be roughly determined by mapping the snow covered area. This region was identified from the difference in reflectance between snow and ice in the near infrared band of Landsat (TM4), and mapped after correcting topographic effects to determine surface reflectance. The area-averaged geodetic mass budget was then calculated for the individual glaciers by differencing two Digital Terrain Models (2000s minus 1980s, derived from LiDAR and aerial photogrammetry) and combining the result with the glacier outlines. Afterwards, we examined the mass balance data using statistical analyses (Correlation matrices, Principal Component Analysis, Cluster Analysis). This allowed us highlighting clusters of glaciers, which exhibit a similar behavior, identify the outlayers and the relative influence of the factors controlling spatial variability of the mass losses. Finally, we assessed the degree of imbalance of individual glaciers by comparing the current Accumulation Area Ratios (AAR) with the balanced-budget AAR (AAR0), the latter also accounting for the debris cover of glaciers. We found that the total area loss of the Ortles-Cevedale glaciers from 1987 to 2009 amounts to 23.5 km2, i.e. 23.4% of the initial area. On the other hand, the AAR of the entire glacier system was 0.3 in both investigated years. The overall debris cover increased from 10.5% to 16.3%. The geodetic mass balance rate was -0.7 m w.e. y1(as an average on 112 ice bodies), ranging from -0.1 to -1.7 m w.e. y1. We also found that the main controls of the differing change of single glaciers are related to their hypsometry (elevation range and slope), AAR, feeding source and debris cover. Interestingly, a significant correlation was found between AAR, AAR0 and debris cover. This information was used to assess and visualize the needed additional reduction of individual glaciers to reach equilibrium with the current size of their accumulation areas. This amounts on average to a further reduction of 40% of the current areal extent of glaciers

    Exosomes for diagnosis and therapy in gastrointestinal cancers

    Get PDF
    Exosomes are membrane-bound extracellular vesicles (EVs) released by most cells, having a size ranging from 30 to 150 nm, and are involved in mechanisms of cell-cell communication in physiological and pathological tissues. Exosomes are engaged in the transport of biomolecules, such as lipids, proteins, messenger RNAs, and microRNA, and in signal transmission through the intercellular transfer of components. In the context of proteins and nucleic acids transported from exosomes, our interest is focused on the Frizzled proteins family and related messenger RNA. Exosomes can regenerate stem cell phenotypes and convert them into cancer stem cells by regulating the Wnt pathway receptor family, namely Frizzled proteins. In particular, for gastrointestinal cancers, the Frizzled protein involved in those mechanisms is Frizzled-10 (FZD-10). Currently, increasing attention is being devoted to the protein and lipid composition of exosomes interior and membranes, representing profound knowledge of specific exosomes composition fundamental for their application as new delivering drug tools for cancer therapy. This review intends to cover the most recent literature on the use of exosome vesicles for early diagnosis, follow-up, and the use of these physiological nanovectors as drug delivery systems for gastrointestinal cancer therapy

    Climate Changes and Their Elevational Patterns in the Mountains of the World

    Get PDF
    Quantifying rates of climate change in mountain regions is of considerable interest, not least because mountains are viewed as climate “hotspots” where change can anticipate or amplify what is occurring elsewhere. Accelerating mountain climate change has extensive environmental impacts, including depletion of snow/ice reserves, critical for the world's water supply. Whilst the concept of elevation-dependent warming (EDW), whereby warming rates are stratified by elevation, is widely accepted, no consistent EDW profile at the global scale has been identified. Past assessments have also neglected elevation-dependent changes in precipitation. In this comprehensive analysis, both in situ station temperature and precipitation data from mountain regions, and global gridded data sets (observations, reanalyses, and model hindcasts) are employed to examine the elevation dependency of temperature and precipitation changes since 1900. In situ observations in paired studies (using adjacent stations) show a tendency toward enhanced warming at higher elevations. However, when all mountain/lowland studies are pooled into two groups, no systematic difference in high versus low elevation group warming rates is found. Precipitation changes based on station data are inconsistent with no systematic contrast between mountain and lowland precipitation trends. Gridded data sets (CRU, GISTEMP, GPCC, ERA5, and CMIP5) show increased warming rates at higher elevations in some regions, but on a global scale there is no universal amplification of warming in mountains. Increases in mountain precipitation are weaker than for low elevations worldwide, meaning reduced elevation-dependency of precipitation, especially in midlatitudes. Agreement on elevation-dependent changes between gridded data sets is weak for temperature but stronger for precipitation
    • …
    corecore