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ABSTRACT

This paper describes an algorithm that is aimed at the identification of cloudy and clear pixels in
Moderate-Resolution Imaging Spectroradiometer (MODIS) images to support earth science and nowcast-
ing applications. The process from geolocated and calibrated data allows one to obtain cloud masks with
four clear-sky confidence levels for five different cloud system types. The technique has been developed
using the MODIS cloud-mask algorithm heritage, but the threshold tests performed have been executed
without comparing solar reflectances and thermal brightness temperatures with thresholds determined in
advance, but instead with thresholds carried out from classification methods. The main advantage of this
technique is that the thresholds are obtained directly from the images. Seventy-five percent of the spectral
signatures (known as end members) derived from the winter images in the detection of the various cloud
types and 80% of the summer end members can be considered as being well discriminated. Furthermore,
it seems that the end members characterizing the different cloud systems are constant throughout the
various seasons of the year (they vary with a confidence level of 60%), whereas those describing clear sky
change in a notable manner (the associated confidence level is 99%). The algorithm is able to produce cloud
masks pertinent to limited regions at a mesoscale level, which may be a key factor for nowcasting purposes.
This work shows that the use of end members and spectral angles, as opposed to spectral thresholds, should
be carefully examined because of the fact that it might be simpler or that higher performances may be
achieved at a regional scale.

1. Introduction

Clouds reflect a considerable amount of incoming
solar energy back to space before it can be absorbed by
the earth’s system, thus cooling the terrestrial surface.
At the same time, they absorb a large amount of the
outgoing infrared radiation, thus inhibiting the earth’s
system from releasing heat back into space and hence-
forth warming the atmosphere. Whether the surface of
the earth will heat or cool depends on several factors,
including cloud altitude and size as well as the makeup
of the particles that form the cloud. Cloud cover plays
a key role in the radiative balance of the earth and must
be accurately described to assess weather and climatic
evolution correctly. In addition, the presence or ab-
sence of cloudiness must be carefully determined to
retrieve many atmospheric and surface parameters cor-
rectly, because of the fact that, for many of these re-

trievals, cloud cover (even thin cirrus) is representative
of contamination.

This paper reports a procedure that is able to distin-
guish overcast sky from clear sky with four confidence
levels for five different cloud types. The process is ap-
plied to 64 daytime images (one per day ranging from
20 January to 20 February and from 20 July to 20 Au-
gust 2002). These images were acquired in the Medi-
terranean Sea basin area of Apulia, in the south of
Italy. The input data are the reflectances and the radi-
ances contained in the products MOD021KM, relative
to the Terra mission of the Moderate-Resolution Imag-
ing Spectroradiometer (MODIS; Justice et al. 1998;
King et al. 1992). The procedure essentially consists of
two stages. In the first stage, beginning from a set of
training images and with the aid of the MODIS cloud-
mask algorithm (MCMA; Ackerman et al. 1998, 2002),
some regions of interest are chosen, one for each test
required to identify the differing cloud types. In succes-
sion, these regions of interest are suitably averaged to
derive spectral signatures, known as end members, and
are used in the second stage to analyze the whole image
set. Using these end members and the spectral-angle
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mapper (SAM) algorithm of classification (Kruse et al.
1993), each time, the process dynamically determines a
set of threshold values that are introduced inside the
standard algorithm. The MCMA manages these thresh-
old values and the different tests and finally generates
the cloud mask.

The advantage of this technique is that the threshold
values on which the tests are based do not need to be
predetermined from the environmental conditions, be-
cause they are obtained by the process of classification,
which gathers the pixels having the nearest spectral sig-
natures to the end members in the image.

The criterion used for the selection of the utilized
electromagnetic bands is derived from previous works
developed with MODIS images and makes the tech-
nique also applicable to Meteosat Second-Generation
(MSG; Woick et al. 1997; Schmetz et al. 1998; Watts et
al. 1998) images. This aspect is important because of the
fact that MSG satellites generate images every 15 min,
making them the best solution in forecasting with re-
gard to time. The analysis by Meteosat data can be
integrated with MODIS data. This last sensor has a
limited temporal cover (one, or at the most, two images
of the same geographical area per day) but has several
bands that are very useful in discriminating the differ-
ent cloud types. For example, the band centered on the
wavelength of 1.38 �m, absent in the MSG data, is
particularly useful for the study of thin and high clouds
such as cirrus (Gao et al. 2002).

2. MODIS cloud-mask algorithm

Clouds are generally characterized by reflectances
and temperatures that are respectively higher and
lower than those on the underlying earth’s surface.
Simple visible and infrared window threshold ap-
proaches are often used in cloud detection, albeit with
the difficulties they present. Many conditions of the
terrestrial surface reduce cloud contrast in some spec-
tral regions (e.g., bright clouds over snow and ice).
Moreover, cloud types such as thin cirrus, low-level
stratus at night, and small cumulus typically have low
contrast with the underlying background. Cloud edges
cause further difficulty because the instrument field of
view is almost always neither completely obstructed by
clouds nor completely clear (Ackerman et al. 2002).

To determine the confidence level of observing clear
sky, the MCMA uses several cloud-detection tests. It
identifies several domains according to the surface type
and the solar illumination, including land, water, snow,
ice, desert, and coast, in both daytime and nighttime.
Once a pixel has been assigned to a particular domain
(defining an algorithm path), a series of threshold tests

attempt to detect the presence of clouds in the instru-
ment field of view. Each cloud-detection test returns a
confidence level that a given pixel is clear, ranging in
value from 1 (high confidence that the pixel is clear) to
0 (high confidence that the pixel is cloudy). Tests ca-
pable of detecting similar cloud conditions are grouped
together. The MCMA gathers its cloud confidence tests
into five sets. These groups are arranged so that inde-
pendence among them is maximized (Ackerman et al.
2002).

All of the spectral cloud-detection tests rely on
thresholds, which are never global and need to be in-
terpreted carefully. For example, if over open ocean
(away from sunglint) the brightness temperature at the
wavelength of 11 �m (T11) is greater than 270 K, then
the pixel is identified as clear. It seems, however, un-
realistic to label a pixel with T11 � 271 K as clear and
a neighboring pixel with T11 � 269 K as cloudy. Figure
1 is a graphical representation of how a confidence level
is assigned by the MCMA for a given spectral test. The
abscissa represents the observation (T11 in the ex-
ample) and the ordinate is the clear-sky confidence
level (CLNC). This test labels an observation greater
than the value � as a high-confidence clear-sky scene
and assigns it the value of 1. A pixel having a value of
less than � is considered to be a cloudy sky observation,
and a confidence level of 0 is thus assigned. For obser-
vations between � and �, a confidence value between 0
and 1 is assigned according to a linear function. High-
confidence cloudy and clear-sky thresholds, � and �,
respectively, are derived from previous studies, obser-
vations, and theoretical simulations.

The satellite-measured solar reflectances and bright-
ness temperatures (the blackbody temperatures deter-
mined using Planck’s function) are denoted as � and T,
respectively. Subscripts refer to the wavelength at
which the measurement is made.

Group I detects high, thick clouds using the bright-
ness temperatures T11, T13.9, and T6.7. Group II is fo-
cused on the detection of thin clouds with the bright-
ness temperature differences of T11 � T12, T8.6 � T11,

FIG. 1. Plot of CLNC as a function of T11 values.
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T3.7 � T11, and T6.7 � T11. Group III is useful for the
detection of low clouds and uses the reflectances �0.87,
�0.66, and �0.94, reflectance ratio tests, and the brightness
temperature difference T3.7 � T3.9. Group IV contrib-
utes to a good detection of upper-tropospheric thin
clouds by the reflectance �1.38. Group V focuses on the
detection of cirrus using the brightness temperature dif-
ferences T11 � T12, T3.7 � T12, and T13.7 � T13.9.

Tests within a group may detect more than one cloud
type, and it is important to realize that the cloud-mask
tests are not independent of one another either within
the various groups or within the same group. A variety
of spectral observations increase the possibility of de-
termining cloud presence. Spectral tests carried out for
a spectral region can solve problems that may be en-
countered with spectral tests performed for another
spectral region.

Once the entire test set has been performed, it be-
comes necessary to combine the results to obtain the
overall confidence level Q. The result of the generic test
t, belonging to the group g(t), is denoted as Fg(t)

t . The
confidence indicator Gg of group g is the smallest of all
the confidence indicators Fg

t belonging to group g and
provides information regarding the absence of the
cloud type detected by group g. The cloud mask Q is
then determined by the geometric average of all the
group confidences Gg.

This approach is conservative in the estimation of
clear sky. If a test is highly confident that the scene is
cloudy (Fg

t � 0), the value of Q will be 0.
Cloud masks report four levels of confidence, pro-

vided that the field of view is not obstructed by clouds:
pixels with 0 � Q � 0.66, 0.66 � Q � 0.95, 0.95 � Q �

0.99, and 0.99 � Q � 1 are labeled respectively as con-
fident cloudy (CC), probably cloudy (PC), probably
clear (PNC), and confidently clear (CNC). The above-
mentioned Q threshold values are derived from a sta-
tistical analysis based on a considerable number of ob-
servations (Ackerman et al. 2002).

3. Dynamic-threshold cloud-mask algorithm

Thresholds used in the MCMA can be found in Ack-
erman et al. (2002) and are dependent upon a consid-
erable number of parameters, such as

• the hour (because of solar contribution, the different
observed objects have reflectance and brightness
temperature values that are higher if measured in the
daytime and lower if measured at night, making day-
time thresholds greater than the nighttime thresh-
olds),

• the month (because of solar contribution, a summer
threshold is, e.g., greater than a winter threshold),

• the latitude (e.g., at the equator there are threshold
values that are greater than those at the North Pole),

• the ecosystem (an area rich in vegetation and a desert
are characterized, e.g., by unequal thresholds),

• the underlying surface (the threshold values vary ac-
cording to whether there is the ocean or a tilled land
under the cloud system, because of the different
emissivities of these surfaces),

• the atmospheric conditions (a snowstorm threshold
differs from a clear-sky threshold),

• the atmospheric composition (humid days and dry
days yield differing threshold values because of the
different physical behavior of the individual compo-
nents of the atmosphere), and

• the aerosol content (it is taken for granted that, over
open ocean or in the immediate vicinity of the Etna
volcano while in eruption, differing threshold values
would be present).

The threshold values used in the MCMA refer to
oceans, deserts, or inland areas, which are zones char-
acterized by stable conditions. Apulia is a region in
which land and sea are in close proximity and in which
there is a wide variety of ecosystems; therefore, it con-
stitutes a very complex environmental system, and the
strict thresholds employed by the MCMA are unsuit-
able. For this reason, an alternative method has had to
be employed and the dynamic-threshold cloud-mask al-
gorithm (DTCMA) has been developed accordingly.

DTCMA uses six MODIS bands (one having the sun
as blackbody and five having the earth as blackbody):
the solar band is 26 (1.375 �m), and the earth infrared
bands are 20 (3.750 �m), 21 (3.959 �m), 29 (8.550 �m),
31 (11.030 �m), and 32 (12.020 �m).

The MODIS files used are the products MOD021KM
and MOD03 (MODIS Terra data products, obtained on-
line at http://daac.gsfc.nasa.gov/data/dataset/MODIS/),
all of which are hierarchical data format (HDF) files
[National Center for Supercomputing Applications
(NCSA) HDF, described online at http://hdf.ncsa.uiuc.
edu/]. The MOD021KM products provide data that re-
fer to all of the MODIS bands with a spatial resolution
equal to 1 km. They are of L1B type (described online
at http://daac.gsfc.nasa.gov/data/dataset/MODIS/) and
contain, among other information, the reflectances and
the radiances of the objects observed by the sensor.
Products MOD03 are of L1A type (described online at
http://daac.gsfc.nasa.gov/data/dataset/MODIS/) and
contain, in addition, the land–sea maps of the observed
scenes.

The reflectance � of a pixel is calculated by dividing
the reflectance �0 stored in the MOD021KM product
by the cosine of the solar zenith angle �S; the brightness
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temperature is derived from the radiances B	(T) by
applying Planck’s law.

The reflectances � and the brightness temperatures T
are not correct for atmospheric effects, because of the
fact that the analyzed bands are positioned inside at-

mospheric windows, where such effects can be over-
looked (Justice et al. 1998; King et al. 1992).

Classification algorithms such as “minimum dis-
tance,” “parallelepiped,” and “k means” are based on
spectral intensities, whereas the “maximum likelihood”
requires the knowledge of “a priori” probabilities,
which are not always known. In contrast, the SAM al-
gorithm is independent of spectral values and does not
need the introduction of additional a priori probabili-
ties (Kruse et al. 1993; Ball and Hall 1967; Green et al.
1988). For each class Cr to be determined, the SAM
algorithm averages the vectors representing in the
space of characteristics the training pixels pertinent to
the region of interest Rr and thus generates the average
vector Mr, known as the end member. Once all of the
end members have been generated, for each pixel P of
the image, SAM calculates the angles 
r between the

FIG. 2. (a) Visible-spectrum image of the scene observed by MODIS Terra at 1010 UTC 26
Jan 2002; grayscale images of (b) Z1 and (c) Z2; (d) RGB of the first three bands of the MNF
transformation; some of the regions of interest selected for (e) Z1 and (f) Z2; (g) thematic map
of C1; (h) thematic map of C8 and C9; (i) visible-spectrum image of the MODIS subscene
analyzed by DTCMA; (j) image of the matrix Q (red, yellow, green, cyan, and blue correspond
to confidence levels equal to 0, 0.25, 0.5, 0.75, and 1, respectively); (k) cloud mask (the levels
of confidence CC, PC, PNC, and CNC are represented with the colors red, yellow, cyan, and
blue, respectively) referring to 26 Jan 2002.

TABLE 1. Cloud-detection tests used in the work. The header
variables are defined in the text.

t g �g Zt �t

1 1 High, thick clouds T11 0.05
2 2, 5 Thin clouds, cirrus T11 � T12 0.05
3 2 Thin clouds T8.6 � T11 0.08
4 2 Thin clouds T3.7 � T11 0.12
5 3 Low clouds T3.7 � T3.9 0.11
6 4 Upper-tropospheric thin clouds �1.38 0.08
7 5 Cirrus T3.7 � T12 0.11
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vector P associated with the pixel and the various end
members Mr. In succession, for each class Cr, the algo-
rithm compares angle 
r with the spectral angle �r of
class Cr, and if 
r is less than �r then the pixel P is
considered to belong to class Cr. If two or more classes
satisfy that condition, the algorithm of classification la-
bels pixel P with the name of the class minimizing 
r. If
no class satisfies that condition, pixel P is labeled as
“unclassified.” The spectral angle �r is the n-dimen-
sional solid angle that defines the opening angle of the
n-dimensional cone having the direction of the end
member Mr as axis and that contains all of the pixels
belonging to class Cr.

Table 1 for each test t performed demonstrates the
group g to which the test belongs, the cloud type �g

detected by the group, the input quantity Zt analyzed
by the test, and the spectral angle �t used to select from
the scene the pixels that can be considered as being
contaminated by the cloud type �g. In our case, the
space of characteristics in which the various pixels are
represented has seven dimensions.

Starting from the data contained in the products
MOD021KM, for each image a program written in
Interactive Data Language produces a file containing
a three-dimensional matrix Z with seven layers (Z1,
Z2, . . . , Z7). The generic dataset Zt is the bidimensional
matrix that contains the values of the quantity com-
puted by test t. The dimensions of every matrix Zt are
the shortest ones that allow Zt to contain all of the
pixels from the Italian geographical area stored in the
original MODIS image, the only pixels processed by
the algorithm. The construction of the file with the
seven layers Z1, Z2, . . . , Z7 is necessary to apply the
algorithm of classification in a seven-dimensional space
of characteristics.

Once this file has been produced, the following eight
steps are performed:

1) Using the proprietary “ENVI” software package,
for each layer Zt a region of interest Rt (ENVI
User’s Guide Team 2003), constituted by pixels typi-

cal of cloud type �g(t) being detected (Figs. 2e and
2f), is manually selected in Zt following the MCMA
test logic.

2) The SAM algorithm of classification, making use of
the newly determined regions of interest R1, R2, . . . ,
R7, generates the end members M1, M2, . . . , M7 in
the seven-dimensional space of characteristics and,
by using these end members and the spectral an-
gles �1, �2, . . . , �7 shown in Table 1 (expressed
in radians), produces seven thematic maps, con-
taining classes C1, C2, . . . , C7, respectively, where
the generic class Ct is constituted by the pixels lo-
cated within the seven-dimensional cone deter-
mined by the end member Mt and the spectral angle
�t (Fig. 2g).

3) For every layer t, the following two averages are
calculated: the average mclt of the pixels belonging
to matrix Zt and contained inside the intersection
between set Ct and land pixel set L and the average
mcst of tth-layer pixels belonging to the intersection
between set Ct and sea pixel set S (L and S sets
are obtained from the land–sea maps provided by
the MODIS MOD03 products).

4) Set C (the union set of sets Ct) and set NC (the
complementary set of set C) are built.

5) Inside the intersection between set NC and sets L

and S, respectively, a region of interest R8 repre-

TABLE 2. Winter end-member components (all expressed in kelvins, except the sixth one, which is nondimensional).

t 1 2 3 4 5 6 7

Et
1 234.682 0.660 11 1.485 89 36.2730 18.0143 0.259 671 36.9332

Et
2 259.379 3.609 01 2.417 62 33.2496 11.5313 0.080 495 36.8776

Et
3 248.056 2.370 63 3.466 03 34.4896 12.4254 0.145 287 36.8709

Et
4 240.673 1.151 90 1.190 64 45.2143 18.2874 0.214 754 46.3703

Et
5 241.182 0.425 91 0.069 15 44.7467 20.8222 0.247 904 45.1763

Et
6 234.627 0.575 91 1.369 46 34.5712 17.6514 0.296 442 35.1446

Et
7 241.135 1.311 49 1.272 31 45.7476 18.2087 0.210 822 47.0599

Et
8 287.967 0.254 40 �2.867 63 7.7989 4.0604 0.001 605 8.0519

Et
9 284.443 0.635 45 �2.718 05 2.9581 1.9457 0.001 263 3.5954

TABLE 3. Winter end-member-component standard deviations (all
expressed in kelvins, except the sixth one, which is nondimensional).

t 1 2 3 4 5 6 7

�t
1 11.828 0.514 97 0.986 40 8.6932 4.3884 0.133 598 8.4489

�t
2 8.719 0.838 71 1.417 86 7.1138 2.6251 0.045 680 7.6451

�t
3 9.228 0.989 75 1.107 97 7.0302 3.5131 0.070 640 7.0614

�t
4 13.734 0.645 97 1.247 92 9.6138 3.9222 0.136 894 9.3827

�t
5 18.672 0.222 11 1.867 10 9.7413 4.5584 0.181 308 9.7635

�t
6 13.680 0.511 00 0.801 57 9.2765 5.6999 0.138 071 8.9021

�t
7 13.887 0.823 76 1.149 17 10.1977 4.3029 0.136 484 9.9396

�t
8 3.640 0.181 97 0.350 49 1.2016 0.7702 0.000 855 1.2146

�t
9 1.953 0.230 51 0.386 52 0.3255 0.2915 0.000 443 0.4797
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sentative of clear sky over land and a region of in-
terest R9 for clear sky over sea are selected.

6) Starting from the regions of interest R8 and R9, the
classification algorithm generates the end members
M8 and M9, and, by using these end members and
spectral angles �8 and �9 (equal to 0.006 and 0.003
radians, respectively), a thematic map with two
families of pixels (the land clear-sky pixel class C8

and the sea clear-sky pixel class C9) is produced
(Fig. 2h).

7) The average mnclt of the tth-layer pixels contained
inside C8 and the average mncst of the matrix Zt

pixels belonging to C9 are calculated for every t.
8) For each layer t, a pair of values (mclt, mnclt) is

assigned to all of the land pixels and a pair (mcst,
mncst) is assigned to all of the sea values.

The images in Fig. 2 were obtained using the MODIS
data of 1010 UTC 26 January 2002. Starting from the
top-left-hand side, there are the red–green–blue (RGB)
image of MODIS bands 1, 4, and 3 (respectively cen-
tered on 0.635, 0.555, and 0.469 �m), which is registered
according to the universal transverse Mercator (UTM)
projection technique with the 1984 world geodetic sys-
tem datum (WGS84) and north zone 33 (Fig. 2a); the
grayscale images of layers Z1 and Z2 (Figs. 2b,c), which
respectively give prominence to high, thick clouds (Z1)
and thin clouds and cirrus (Z2); and the RGB image of
the first three bands of minimum noise fraction (MNF)
transformation (Fig. 2d) (Nielsen 1999). Figure 2 also
contains some regions of interest selected for the Z1 and
Z2 matrices (Figs. 2e,f), the thematic map of the cloud
type analyzed by the first test (Fig. 2g), and the land
and sea clear-sky thematic map (Fig. 2h). Figures 2i, 2j,
and 2k respectively report the visible band image of the
MODIS subscene, which is analyzed by DTCMA, the
image of the matrix Q, and the final cloud mask image.

For every layer Zt the corresponding region of inter-
est Rt is highlighted following the indications of test t.
For example, region R2 is obtained by selecting from
image Z2 the whitest pixels, which correspond to the

greatest values of T11 � T12 and so to cloudy pixels
(thin clouds), according to test-2 logic.

Because the objective is to study Apulia, the regions
of interest (see points 1 and 5 of the list above) were
selected with preference to those in close proximity to
Apulia and the whole of Italy and not, for example,
those in Africa or northern Europe. This procedure was
used because many characteristics of cloud systems
strongly depend upon the zone in which they are situ-
ated, and thus using samples drawn from other zones
would have increased the risk of considerable classifi-
cation errors. Because of this approach, the obtained
results are optimized for Apulia.

For clear-sky areas, it is necessary to verify accu-
rately that the selected regions of interest are truly rep-
resentative of clear sky and are lacking in contamina-
tion by cloudy elements. The clear-sky regions of inter-
est were selected to be at a sufficient distance from
cloudy pixels in every layer Zt.

The spectral angles �1, �2, . . . , �9 used in the vari-
ous SAM classifications to derive classes C1, C2, . . . , C9

(Table 1 and point 6 above) were obtained by selecting,
for each training image, a new set R�11, R�2, . . . , R�9 of
regions of interest with the same method employed for
R1, R2, . . . , R9 (points 1 and 5 above), tuning the spec-
tral angles to make C1, C2, . . . , C9 contain approxi-
mately all of the pixels of R�1, R�2, . . . , R�9, respectively,

TABLE 4. Summer end-member components (all expressed in kelvins, except the sixth one, which is nondimensional).

t 1 2 3 4 5 6 7

Et
1 231.841 0.255 96 0.923 64 32.6617 17.6898 0.378 934 32.9243

Et
2 279.019 4.547 99 0.462 71 33.2258 9.6683 0.028 595 37.8477

Et
3 250.988 2.128 26 2.732 82 33.1294 10.9150 0.118 336 35.2858

Et
4 257.182 0.592 71 �0.906 80 49.4095 17.6935 0.102 363 49.9973

Et
5 256.725 0.415 57 �1.009 63 47.7078 18.9190 0.132 662 48.1237

Et
6 231.048 0.304 50 1.033 06 34.6811 19.0124 0.402 523 34.9894

Et
7 258.867 0.904 81 �0.740 15 49.7123 17.2947 0.087 902 50.6246

Et
8 308.398 2.050 98 �3.969 87 12.1050 2.9851 0.000 302 14.1661

Et
9 293.323 1.092 13 �3.047 99 6.7620 2.2321 0.000 798 7.8543

TABLE 5. Summer end-member-component standard deviations (all
expressed in kelvins, except the sixth one, which is nondimensional).

t 1 2 3 4 5 6 7

�t
1 13.490 0.268 49 0.439 86 9.1008 6.1490 0.180 356 8.9186

�t
2 7.623 1.009 81 1.394 99 6.3743 1.9756 0.018 377 7.2548

�t
3 8.620 0.787 15 1.456 73 7.8516 2.6898 0.031 541 8.4585

�t
4 11.644 0.338 34 0.754 41 13.0282 3.6260 0.060 645 13.1538

�t
5 19.087 0.242 33 1.195 68 12.6636 4.5488 0.128 848 12.8201

�t
6 13.042 0.421 14 0.468 89 7.1080 6.2660 0.172 464 6.8961

�t
7 12.161 0.325 88 0.736 22 11.0013 3.1060 0.052 578 11.1806

�t
8 8.003 0.610 22 0.373 85 1.5435 0.6974 0.000 808 2.0600

�t
9 2.097 0.390 73 0.426 40 2.9266 1.4417 0.000 381 2.7441
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and averaging all of the training image spectral angles
that facilitated the arrival at such a condition.

The spectral angles indicated in Table 1 and point 6
above were derived from MCMA in an empirical way.
In fact, following the indication given by MCMA
thresholds, regions of interest typical of the different
sky types were selected. In succession, the spectral
angles were determined so as to maximize the SAM
skill in detecting the different sky types by using the
chosen regions of interest. Even if derived in an em-
pirical manner, the spectral angles are related to the

sky-type characteristics. The spectral angles depend on
the position and the variability of the different sky-type
classes in the space of characteristics: the lesser the
width of the angle between the end members of two
different classes is and the smaller the two classes are,
the less wide the spectral angles necessary to discern
the two classes are.

The quantities mct(x, y) and mnct(x, y) can be con-
sidered as coinciding with the quantities � and � of
section 2, and the levels of confidence produced by the
new approach are given by equations such as

Ft
g�t��x, y� � �

0 if Zt�x, y� � mct�x, y�

Zt�x, y� � mct�x, y�

mnct�x, y� � mct�x, y�
if mct�x, y� � Zt�x, y� � mnct�x, y�

1 if Zt�x, y� � mnct�x, y�.

�1�

This kind of equation is applied to each pixel (x, y) of
each layer Zt, producing a new file containing the three-
dimensional matrix F, made by the seven layers
F1

1, F2,5
2 , F2

3, F2
4, F3

5, F4
6, and F5

7.
According to the MCMA scheme (Ackerman et al.

2002), for each pixel (x, y) from the values of Fg
t (x, y)

the value of Gg(x, y) is drawn. Therefore, the algorithm
builds a further file containing the three-dimensional
matrix G with the five layers G1, G2, G3, G4, and G5,
where

G1�x, y� � F1
1�x, y�, �2�

G2�x, y� � min�F2
2,5�x, y�, F3

2�x, y�, F4
2�x, y��, �3�

G3�x, y� � F5
3�x, y�, �4�

G4�x, y� � F6
4�x, y�, and �5�

G5�x, y� � min�F2
2,5�x, y�, F7

5�x, y��. �6�

Thus, according to the MCMA, the value of Q(x, y) is
obtained from the values of Gg(x, y) for each pixel (x,
y) with the relationship

Q�x, y� ���
g�1

5

Gg�x, y��1�5

. �7�

Last, pixels with 0 � Q(x, y) � 0.66 are labeled as CC,
pixels with 0.66 � Q(x, y) � 0.95 are labeled as PC,

pixels with 0.95 � Q(x, y) � 0.99 are labeled as PNC,
and pixels with 0.99 � Q(x, y) � 1 are labeled as CNC
(Figs. 2i,j,k).

The procedure described was applied to 10 winter
MODIS images and 10 summer MODIS images (train-
ing sets). For each image (d � 1, 2, . . . , 10) of each
training set (p � w, s), where w indicates winter and s
indicates summer, the average value M t

r(p, d) of the
values referring to the pixels belonging to the region of
interest Rr(p, d) is calculated for every matrix Zt(p, d),
with r � 1, 2, . . . , 9 and t � 1, 2, . . . , 7. For each season,
the tth component Et

r(p) of the end member Er(p) as-
sociated with the region of interest Rr is the arithmetic
average of the values M t

r(p, d) along the 10 training
images of season p:

Er
t�w� �

1
10 �

d�1

10

M r
t�w, d� and �8�

Er
t�s� �

1
10 �

d�1

10

M r
t�s, d�. �9�

TABLE 6. Standard deviation (°) of the angle between winter
end members and averages.

�1 �2 �3 �4 �5 �6 �7 �8 �9

3.28 2.28 2.54 3.42 3.85 3.60 3.62 0.36 0.15

TABLE 7. Standard deviation (°) of the angle between summer
end members and averages.

�1 �2 �3 �4 �5 �6 �7 �8 �9

3.74 2.14 2.72 4.17 4.39 3.17 3.60 0.56 0.78

TABLE 8. Student’s t test probability of winter and summer end
members being separated.

P1 P2 P3 P4 P5 P6 P7 P8 P9

0.71 0.75 0.68 0.65 0.65 0.63 0.65 1.00 1.00
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The end members so determined (Tables 2, 3, 4, and 5)
were used rather than choosing regions of interest
(points 1 and 5 of section 3) so as to analyze the whole
image dataset.

4. Results

For each training image, the choice of the various
regions of interest Rr(p, d) involves the determination
of the nine average vectors Mr(p, d), with the seven
components M1

r(p, d), M2
r(p, d), . . . , M7

r(p, d). The end
members Er(p) are the averages of the vectors Mr(p, d)
related to the 10 training images of season p. Tables 6
and 7 list the values assumed by the standard deviation
�r(p) of the angle between vectors Er(p) and Mr(p, d),
calculated using the following formula:

�r�p� � � 1
10 �

d�1

10

arccos2
Er�p� · Mr�p, d�

|Er�p� ||Mr�p, d� |�1�2

.

�10�

The average angular distance between the winter end
members is equal to 6.22°; the maximum value occurs
with E7 and E9 (�79 � 14.79°), and the minimum is
between E4 and E7 (�47 � 0.17°). The minute value of
�47 was foreseeable because thin clouds and cirrus char-
acteristics are so close that there are even quantities
(such as T11 � T12, evaluated by test 2) that detect both
cloud types. The same reasoning can also be adopted
for other cloud types.

For summer, the average angular distance between
the end members is 5.98° and the maximum and the
minimum values occur again with E7 and E9 (�79 �
13.70°) and with E4 and E7 (�47 � 0.15°), respectively.
The previous angles �ij between the end members Ei(p)
and Ej(p) were calculated with the relationship

�ij�p� � arccos
Ei�p� · Ej�p�

|Ei�p� ||Ei�p� | . �11�

For each couple of end members (Ei, Ej) from the same
season p, the Student’s t test was performed to estimate

whether end members Ei and Ej could be considered to
be representative of different categories. According to
this test, so that the sample constituted by vectors Mi(p,
1), Mi(p, 2), . . . , Mi(p, 10) and that constituted by
vectors Mj(p, 1), Mj(p, 2), . . . , Mj(p, 10) can be con-
sidered with a certain level of confidence to be ex-
tracted from different populations, the Student’s t test
parameter t must be greater than the tabulated critical
value t0. The sample constituted by vectors Mi(p, 1),
Mi(p, 2), . . . , Mi(p, 10) is considered as a reference
and has an average �i � 0° and standard deviation si �
�i, whereas that constituted by vectors Mj(p, 1), Mj(p,
2), . . . , Mj(p, 10) has an average �j � �ij and standard
deviation sj � �j.

For 27 couples (Ei, Ej) over the 36 winter ones we can
assert with a confidence level of 90% that the popula-
tion of vectors Mi(w, 1), Mi(w, 2), . . . , Mi(w, 10) and
that of vectors Mj(w, 1), Mj(w, 2), . . . , Mj(w, 10) are
different and therefore the end members Ei and Ej can
be considered to be representative of two different cat-
egories. For couples (E1, E3), (E1, E5), (E2, E6), and
(E3, E6) the confidence level is equal to 80%, for couple
(E2, E3) it is 70%, and for couples (E1, E6), (E4, E5),
(E4, E7), and (E5, E7) it is equal to 60% (Dowdy and
Wearden 1991). Thus, 75% of all the couples of winter
end members consist of well-separated end members,
and some couples of cloud types (such as high thick
clouds and upper-tropospheric thin clouds, thin clouds
and low clouds, thin clouds and cirrus, or low clouds
and cirrus) have spectral signatures that are too close to

TABLE 9. Annual end-member components (all expressed in kelvins, except the sixth one, which is nondimensional).

t 1 2 3 4 5 6 7

Et
1 233.261 0.458 04 1.204 76 34.4674 17.8521 0.319 303 34.9287

Et
2 269.199 4.078 50 1.440 16 33.2377 10.5998 0.054 545 37.3626

Et
3 249.522 2.249 44 3.099 43 33.8095 11.6702 0.131 812 36.0784

Et
4 248.928 0.872 30 0.141 92 47.3119 17.9904 0.158 559 48.1838

Et
5 248.954 0.420 74 �0.470 24 46.2272 19.8706 0.190 283 46.6500

Et
6 232.837 0.440 21 1.201 26 34.6261 18.3319 0.349 483 35.0670

Et
7 250.001 1.108 15 0.266 08 47.7299 17.7517 0.149 362 48.8422

TABLE 10. Annual end-member-component standard devia-
tions (all expressed in kelvins, except the sixth one, which is
nondimensional).

t 1 2 3 4 5 6 7

�t
1 12.433 0.450 27 0.797 32 8.8578 5.2019 0.166 149 8.7018

�t
2 12.847 1.023 84 1.696 98 6.5740 2.4549 0.043 096 7.2708

�t
3 8.820 0.879 19 1.314 59 7.2870 3.1422 0.055 010 7.6270

�t
4 15.010 0.578 07 1.471 38 11.3496 3.6888 0.118 081 11.2748

�t
5 20.032 0.226 30 1.623 19 11.1004 4.5384 0.164 104 11.1934

�t
6 13.137 0.476 53 0.662 02 8.0435 5.8715 0.161 495 7.7506

�t
7 15.625 0.644 41 1.395 74 10.5226 3.6823 0.118 783 10.4573
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allow for their end members to detect only the cloud
type they should analyze.

For the summer season, 29 out of 36 couples (Ei, Ej)
can be considered, with a confidence level of 90%, to
consist of end members representative of two different
categories. For couples (E1, E3) and (E5, E6) the con-
fidence level is equal to 80%, for couple (E2, E3) it is
70%, and for couples (E1, E6), (E4, E5), (E4, E7), and
(E5, E7) it is 60%. Thus, 81% of all the couples of
summer end members can be considered to consist of
elements that are well separated and that can detect
almost exclusively the cloud type that they are required
to analyze.

For each sky type (r � 1, 2, . . . , 9) the Student’s t test
was performed to estimate whether the winter end
member Er(w) and the summer end member Er(s)
can be considered to be derived from different popula-
tions of averages. The population of vectors Mr(w, 1),
Mr(w, 2), . . . , Mr(w, 10) and the population of vectors
Mr(s, 1), Mr(s, 2), . . . , Mr(s, 10) are different with a
confidence level that ranges from 63% to 75% for r �
1, 2, . . . , 7 and that is equal to 99% for r � 8, 9 (Table
8). This result means that end members E8 and E9

change significantly from winter to summer whereas
for the remaining end members (r � 1, 2, . . . , 7) win-
ter and summer populations of averages Mr (w, 1),
Mr(w, 2), . . . , Mr(w, 10) and Mr(s, 1), Mr(s, 2), . . . ,
Mr(s, 10) can be considered to belong to the same
population and could be used all together to calculate
annual end members Er(a) (Tables 9, 10, and 11; Fig. 6,
below). In moving from winter to summer, it is even
possible to observe that components of end members
Er with r � 1, 2, . . . , 7 vary notably (Table 12) while
angles between them only vary slightly (Table 13). The
angles �r between the end members Er(w) and Er(s)
that are shown in Table 13 were calculated using the
formula

�r � arccos
Er�w� · Er�s�

|Er�w� ||Er�s� | . �12�

Figures 3, 4, and 5 show some cloud masks produced by
this algorithm. For each image there are the RGB of
the MODIS bands 1, 4, and 3 (Figs. 3a, 4a, 5a, and 5c)
and the cloud mask in UTM, in which the levels of
confidence CC, PC, PNC, and CNC are represented
with the colors red, yellow, cyan, and blue, respectively
(Figs. 3b, 4b, 5b, and 5d).

In Fig. 3, comparing the cloud mask (Fig. 3b) with the
visible-band image (Fig. 3a), it is evident that the algo-
rithm correctly classifies as cloudy all of the areas that
appear as covered by clouds. The pixels corresponding
to the cloud systems over the former Yugoslavia,
Apulia, the River Po, Liguria, and in the Corsica region
are classified as CC. For the Tyrrhenian Sea area, it is
evident that, although in the visible spectrum it seems
that there are not many clouds, a considerable number
of pixels are labeled as PC and CC. This result derives
from the fact that the cloud mask expresses the pres-
ence of clouds independently of cloud type. In the con-
sidered area, layers such as Z2 and Z3 (Figs. 3c,d) have
radiance values distant from those characteristic of
clear sky, indicating that thin clouds may be present in
the examined zone (Fig. 3e).

The PC and CC pixels in the vicinity of the Gargano
Promontory (Apulia) that are present in the cloud
mask of Fig. 4 are justified by bands such as Z2 (Figs.
4c–e). The grayscale image of Z6 in Fig. 4 demonstrates
that those clouds are not of the upper-tropospheric thin
variety.

When comparing Figs. 5a and 5b, in the area between
Calabria and Libya there seems to be an excess of pix-
els labeled as PC. Layers such as Z4 (Fig. 5e) have
radiances distant from those characteristic of clear sky;
thus, the possibility of the presence of thin clouds or
particles of sand in that zone must be considered.

Bands such as Z1 (Fig. 5f) demonstrate that the CC
pixels over the Tyrrhenian Sea in the cloud mask of 6
August 2002 are not in excess, as one could surmise by
looking at Figs. 5c and 5d.

It is important to add that MCMA performs addi-
tional clear-sky restoral tests, which act upon 0.87, 0.66,

TABLE 11. Standard deviation (°) of the angle between annual
end members and averages.

�1 �2 �3 �4 �5 �6 �7

3.34 2.34 2.57 3.44 3.88 3.60 3.64

TABLE 12. Percent differences between summer and winter
end-member components.

t 1 2 3 4 5 6 7

�t
1 �1.22 �88.24 �46.67 �10.48 �1.82 37.35 �11.48

�t
2 7.30 23.02 �135.74 �0.07 �17.58 �95.15 2.60

�t
3 1.18 �10.77 �23.66 �4.02 �12.94 �20.45 �4.39

�t
4 6.63 �64.10 �1477.90 8.87 �3.30 �70.88 7.53

�t
5 6.24 �2.46 �229.41 6.41 �9.58 �60.56 6.32

�t
6 �1.54 �61.66 �28.00 0.32 7.42 30.35 �0.44

�t
7 7.09 �36.70 �756.34 8.31 �5.15 �82.30 7.30

�t
8 6.85 155.86 �32.24 43.27 �30.52 �136.65 55.04

�t
9 3.07 52.87 �11.44 78.27 13.71 �45.12 74.39

TABLE 13. Angles (°) between summer and winter end
members.

�1 �2 �3 �4 �5 �6 �7 �8 �9

1.14 0.94 0.72 0.68 0.73 0.44 0.68 1.32 1.09
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3.75, 11, 0.895, 0.935, and 0.443 �m. The first two bands
are used to restore clear sky for areas characterized by
a land–water mix and for regions classified as shallow
water, and the remaining ones are used to remove the

cloudiness assigned to pixels affected by sunglint.
Bands at 3.75 and 11 �m are also employed by
DTCMA, but DTCMA does not use any clear-sky
restoral test; thus it is possible that sometimes DTCMA

FIG. 3. (a) Visible-band image for 1000 UTC 28 Jan 2002; (b) corresponding cloud mask; (c) grayscale image of Z2; (d) grayscale
image of Z3; (e) image of the matrix Q.

FIG. 4. (a) Visible-spectrum image for 1010 UTC 11 Feb 2002; (b) relative cloud mask; grayscale images of (c) Z2 and (d) Z6;
(e) image of the matrix Q.
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classifies pixels affected by sunglint as being cloudy
(Figs. 3, 4, and 5).

By carefully comparing all of the cloud masks that
have been produced by using the annual end members
with those obtained by using the winter and summer

end members, it is evident that no remarkable differ-
ences were observed (Figs. 6, 4b, and 5d).

Figure 7 shows the subimage of the scene observed
by MODIS Terra in the visible spectrum at 1000 UTC
28 January 2002 (Fig. 7a), the corresponding cloud

FIG. 5. Visible-band images for (a) 1005 UTC 30 Jul and (c) 1010 UTC 6 Aug 2002;
(b), (d) corresponding cloud masks; grayscale images of (e) Z4 and (f) Z1.

FIG. 6. Cloud masks of the scenes observed on (a) 11 Feb and (b) 6 Aug 2002, both obtained using annual end
members.
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masks generated by DTCMA (Fig. 7b) and MCMA
(Fig. 7c), and the image of the difference of the matri-
ces “DTCM” and “MCM” (Fig. 7d). Pixels classified as
CC, PC, PNC, and CNC are stored in DTCM and MCM
as integers with values of 0, 1, 2, and 3, respectively, and
matrix DTCM � MCM is obtained by subtracting
MCM values from DTCM values pixel by pixel. The
confusion matrix of the considered subimage (Table 14)
provides an overall accuracy that is equal to 35.0%.

By observing Figs. 8, 9, and 10 it is possible to com-
pare DTCMA and MCMA performances for 11 Feb-
ruary, 30 July, and 6 August 2002. The overall accura-
cies given by the confusion matrices of those scenes are
equal to 45.1%, 41.8%, and 62.9% respectively (Tables
15, 16, and 17).

Figure 11 reports subimages of DTCM � MCM,
DTCM, MCM, visible band scene, Z1, Z2, Z3, and Z6, all
for the same area observed by MODIS Terra at 1000

UTC 28 January 2002. Figure 12 shows images of
DTCM�MCM, DTCM, MCM, visible spectrum scene,
Z2, and Z4, referring to an area observed on 30 July
2002.

By carefully comparing all the cloud masks produced
using DTCMA and MCMA and studying the corre-
sponding confusion matrices, it is possible to assert that
in general the highest percentages in the confusion ma-
trices occur with elements (CC, CC), (CNC, PC),
(CNC, PNC), and (CNC, CNC) and the lowest ones are
associated with (PC, CNC), (CC, CNC), (PC, PNC),
and (PNC, CNC), where the first and the second ele-
ments in the previous couples refer to MCMA and
DTCMA, respectively. Almost all of the pixels classi-
fied as CC by MCMA are classified as CC by DTCMA,
almost all of the pixels classified as PC by MCMA are
classified as PC or CC by DTCMA, and the majority of
the pixels classified as PNC and CNC by MCMA are
both classified as PC by DTCMA. The majority of the
pixels classified as CC by DTCMA are also classified as
CC by MCMA; the majority of the pixels classified as
PC and almost all of the pixels classified as PNC and
CNC by DTCMA are all classified as CNC by MCMA.

Each MCMA test t is characterized by a high-
confidence cloudy-sky threshold value �t and a high-
confidence clear-sky value �t, and MCMA labels a
scene pixel as CC, PC, PNC, or CNC depending on the

FIG. 7. (a) Visible-band image for 28 Jan 2002; images of (b) DTCM and (c) MCM; (d) DTCM � MCM image
(violet, blue, cyan, black, green, yellow, and red correspond to values equal to 3, 2, 1, 0, �1, �2, and �3,
respectively).

TABLE 14. Confusion matrix for 28 Jan 2002.

CC
MCM

PC
MCM

PNC
MCM

CNC
MCM

CC DTCM 25.6 6.7 5.8 0.9
PC DTCM 3.8 6.6 10.6 25.1
PNC DTCM 0.0 0.1 0.3 11.8
CNC DTCM 0.0 0.0 0.1 2.6
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FIG. 8. (a) Visible-spectrum, (b) DTCM, (c) MCM, and (d) DTCM � MCM images for 11 Feb 2002.

FIG. 9. (a) Visible-band, (b) DTCM, (c) MCM, and (d) DTCM � MCM images for 30 Jul 2002.
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pixel value position in comparison with �t and �t (sec-
tion 2). The values of �t and �t are determined from a
large number of observations and theoretical simula-
tions. Each observed radiance value Zt is compared
with its corresponding clear-sky radiance value �t, and,
if it is altered by more than the uncertainty u(�t) in the
clear-sky values, clouds are detected. In this way the
threshold �t for cloud detection is the arithmetic sum of
the clear-sky radiance mean value �t and the magnitude
u(�t) of the uncertainty in the clear-sky radiance esti-
mate [�t � �t � u(�t)]. A pixel is classified as cloudy
only if at least one radiance value Zt is distinct from the
inferred clear-sky radiance mean value �t by an amount
larger than the uncertainty u(�t). This last quantity can
be caused both by measurement errors and by natural
variability and is a function of the instrument noise in
that channel and the magnitude of the correction that
was necessary because of surface spectral radiative
properties, as well as atmospheric moisture and aerosol
reflection contributions (Ackerman et al. 2002).

DTCMA is characterized by a set of nine end mem-
bers (E1, E2, . . . , E9) and a set of nine spectral angles
(�1, �2, . . . , �9). If a scene pixel lies within the seven-
dimensional cone determined by the end member Et

and the spectral angle �t (point 2 of section 3), it is
considered to be a test-t typical cloudy pixel (t � 1,

2, . . . , 7); if the scene pixel lies within the seven-
dimensional cone determined by the end member E8

and the spectral angle �8 (point 6 of section 3), it is
considered to be a typical land clear-sky pixel; if the
scene pixel lies within the cone determined by E9 and
�9 (point 6 of section 3), it is considered to be a typical
sea clear-sky pixel. All of the pixels that satisfy these
conditions are used to calculate the averages mclt, mcst,
mnclt, and mncst, which correspond to �t and �t of
MCMA for every test t [points 3, 7, and 8 and Eq. (1) of
section 3].

The aim of this work is to compare the cloud masks
obtained by MCMA, which uses thresholds �t and �t

determined in advance for several environmental and
temporal domains (Ackerman et al. 2002), with the re-
sults retrieved by using the end members E1, E2, . . . , E9

and the spectral angles �1, �2, . . . , �9.

FIG. 10. Same as Fig. 9, but for 6 Aug 2002.

TABLE 15. Confusion matrix for 11 Feb 2002.

CC
MCM

PC
MCM

PNC
MCM

CNC
MCM

CC DTCM 31.5 2.5 0.5 0.9
PC DTCM 4.0 4.0 4.3 17.5
PNC DTCM 0.0 0.1 0.2 25.1
CNC DTCM 0.0 0.0 0.1 9.3
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Even though

1) DTCMA is a MCMA simplification, because it ap-
plies only a subset of all the MCMA tests (Acker-
man et al. 2002);

2) MCMA performs even clear-sky restoral tests,
which are invoked during daylight hours in areas
where land and water surfaces coexist (as almost
everywhere in the south of Italy), in regions identi-
fied as shallow water (as in many places along the
Italian coastline), and in areas affected by sunglint
(this phenomenon takes place often in the south of
Italy, an area that has a large amount of sunshine)
(Ackerman et al. 2002) and which make DTCMA
cloud masks generally cloudier than MCMA ones;

3) MCMA uses many data inputs that DTCMA does
not, such as the azimuthal and viewing angles, the
elevation above mean sea level, the map of ecosys-
tems, the daily snow/ice map, and the daily ice con-
centration (Ackerman et al. 2002);

4) MCMA also adopts destriping methods; and
5) the end members and the spectral angles deter-

mined and used in this work are not supported by
sizeable statistics and thus their asymptotic orienta-
tions were not achieved;

the cloud masks retrieved with DTCMA satisfactorily
match the MCMA ones; thus the possibility that the
usage of end members and spectral angles instead of
the MCMA thresholds might be easier or might provide
higher regional-scale performances must be carefully
examined.

5. Further developments

The achieved results make it understood that the fol-
lowing three problems must be faced: the periodic noise
affecting the cloud masks obtained by DTCMA, the
extension of the training statistics and the validation of
DTCMA cloud masks.

Image striping may be caused by the coupling of pe-
riodic signals related to the raster scan and data-
sampling mechanism into the imaging electronics of
electro-optical scanners or by power consumption

FIG. 11. Images of (a) DTCM � MCM, (b) DTCM, (c) MCM, (d) visible-band scene, (e)
Z1, (f) Z2, (g) Z3, and (h) Z6 for 28 Jan 2002.

TABLE 17. Confusion matrix for 6 Aug 2002.

CC
MCM

PC
MCM

PNC
MCM

CNC
MCM

CC DTCM 54.5 2.4 1.5 10.1
PC DTCM 1.9 1.6 3.5 10.0
PNC DTCM 0.9 0.3 1.3 6.0
CNC DTCM 0.1 0.0 0.4 5.5

TABLE 16. Confusion matrix for 30 Jul 2002.

CC
MCM

PC
MCM

PNC
MCM

CNC
MCM

CC DTCM 27.6 2.7 1.4 8.4
PC DTCM 2.6 1.6 6.1 29.7
PNC DTCM 0.1 0.0 0.4 7.1
CNC DTCM 0.0 0.0 0.0 12.2
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variations and mechanical oscillations in electrome-
chanical scanners or tape recorders (Moik 1980). Peri-
odic noise can be removed by Fourier methods, but a
simple bandwise Fourier filtering may corrupt signifi-
cant parts of the relevant signal (Moik 1980; Nielsen
1999). Therefore, we should minimize the amount of
filtering by skipping or filtering the MNF bands that
contain the noise in question before transforming back
from MNF space to the original image domain (Nielsen
1999). Regular striping in MODIS images occurs be-
cause data are taken by a multidetector sensor and the
transfer functions of the individual detectors are not
identical, because of temperature variations and
changes in detector materials (Moik 1980). Cloud-mask
striping could be removed by making each detector
subimage possess the same mean and variance of the
full image (Moik 1980) or even by matching the em-
pirical distribution functions of the subimages obtained
by collecting the scan lines of each sensor detector
(Weinreb et al. 1989).

The statistics concerning the training step will be ex-
tended to the other two seasons of the year. In this way
it will be possible to study the evolution of the end
members according to the various seasons and to verify
whether the end members Er with r � 1, 2, . . . , 7 can be
considered regardless of the month of the year. The
results of this analysis will integrate the algorithm and
will allow it to produce cloud masks for every month of
the year. After that the algorithm will be applied to
MSG images.

Last, the problem of the validation of the results will
be faced. To this purpose cloud masks of MODIS
(MOD35_L2 products) and of other sensors, such as
Meteosat, will be used. Also, data from aircraft, bal-
loon, and ground platforms may be acquired. Among
ground-based systems, lidar (Di Girolamo et al. 1994)
gives interesting performances for validation purposes
(Ackerman et al. 2002).
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