2,584 research outputs found

    Minimally complex ion traps as modules for quantum communication and computing

    Full text link
    Optically linked ion traps are promising as components of network-based quantum technologies, including communication systems and modular computers. Experimental results achieved to date indicate that the fidelity of operations within each ion trap module will be far higher than the fidelity of operations involving the links; fortunately internal storage and processing can effectively upgrade the links through the process of purification. Here we perform the most detailed analysis to date on this purification task, using a protocol which is balanced to maximise fidelity while minimising the device complexity and the time cost of the process. Moreover we 'compile down' the quantum circuit to device-level operations including cooling and shutting events. We find that a linear trap with only five ions (two of one species, three of another) can support our protocol while incorporating desirable features such as 'global control', i.e. laser control pulses need only target an entire zone rather than differentiating one ion from its neighbour. To evaluate the capabilities of such a module we consider its use both as a universal communications node for quantum key distribution, and as the basic repeating unit of a quantum computer. For the latter case we evaluate the threshold for fault tolerant quantum computing using the surface code, finding acceptable fidelities for the 'raw' entangling link as low as 83% (or under 75% if an additional ion is available).Comment: 15 pages, 8 figure

    Caractérisation des sous-produits d'oxydation des boues en conditions sous-critiques et supercritiques

    Get PDF
    L'élimination de la matière organique et la réduction de volume des boues peuvent être obtenues par incinération, par oxydation sous pression en milieu humide ("wet air oxidation") ou par combustion en eau supercritique ("supercritical water oxidation"). Une étude en autoclave agité a permis de comparer sur une même boue d'épuration les performances des deux techniques d'oxydation voie humide et d'oxydation supercritique, en mettant l'accent sur les sous-produits résiduels en phase liquide et la composition de la phase gaz. Les résultats obtenus montrent que l'élimination de la DCO dépend fortement de la température: l'abattement de la DCO passe de 70 % à 235 °C à 94 % à 430 °C. L'azote organique de la boue est transformé en NH4+ mais seule une élimination limitée de l'azote totale est obtenue à 430 °C. Les sous-produits résiduels dans la phase liquide sont constitués en majorité d'acides gras, d'aldéhydes et de cétones, l'acide acétique étant prédominant. Hormis le CO2, les sous-produits gazeux majeurs formés par des réactions complexes comme la pyrolyse, le réformage et la méthanation sont CO, H2 et CH4. Dans les conditions supercritiques, tous les sous-produits gazeux sont fortement oxydés. L'augmentation de la température de traitement permet d'obtenir un résidu solide de plus en plus inerte, les cendres obtenues en conditions supercritiques contenant moins de 1 % de matière organique. Les performances des deux procédés étudiés laissent envisager leur développement à moyen terme comme voies alternatives d'élimination des boues.ContextAs the number of wastewater treatment plants increases, and the efficiency of treatment improves, the problem of how to dispose of the ever increasing amounts of generated sludge has intensified. For the beginning of the next century 1 million tons of sludge will be produced annually in France; disposal in landfills will be impossible and agricultural use could be limited by tight quality standards. Therefore, the development of effective and acceptable sludge processes is urgently needed.Destruction of organic matter in sludge and large reductions in sludge volume are achieved either by incineration or by wet air oxidation (WAO), which needs no fuel and generates no smoke, fly ash or emissions of NOx and SO2. Supercritical water oxidation (SCWO) offers an attractive alternative. Water, above its vapor-liquid critical point of 374°C and 221 bar, is an excellent solvent for organic compounds and becomes completely miscible with oxygen. Reported results of sewage sludge SCWO demonstrate rapid and effective treatment. The objective of this study was to compare sub- and supercritical water oxidation of sludge in terms of organic matter destruction and formation of by-products in both gas and liquid phases. MethodologyOxidation of sludge was studied in a 0.5 L batch reactor rated for 450°C-300 bar. The raw material was a biological sludge containing 4% solids with a chemical oxygen demand (COD) value of 52 g/L. In the standard experimental procedure, 100 mL sludge were heated up to reaction temperature and oxygen was then introduced in 50% excess with respect to COD. Heating was maintained during 1 hour before slow cooling to room temperature. The overall organic destruction was quantified in terms of total organic carbon (TOC) and COD. Gas and liquid phases sampled at room temperature after reaction were analyzed by gas chromatography (GC). Sulfur and nitrogen species were also analyzed.ResultsWhen the temperature increased from 210 to 383°C, COD destruction increased significantly (Table 1). At 383°C, a COD destruction efficiency of 94.3% was obtained. However, at 430°C, organic matter oxidation was only marginally improved. In WAO tests, considerable acetic acid was produced and remained in the substrate. The produced acetic acid was oxidized rapidly under SCWO conditions. Surprisingly, the concentrations of the other volatile fatty acids (VFA) remained approximately constant between 310 and 430°C (Table 2). In addition to VFA, which represent ca. 50% of the residual COD, oxygenated organic compounds such as aldehydes, ketones and alcohols were produced (Table 3). The data in Table 4 show that decomposition of organic nitrogen compounds into ammonia was completed at 383°C, while nitrates were reduced to N2 by reaction with organic matter and ammonia. NOx were not detected in the gas phase. The low reactivity of ammonia in supercritical water had been previously demonstrated. At 430°C, ammonia removal from sludge was limited to 15%. On the other hand, even in WAO conditions all sulfur species were totally converted to sulfate. Under subcritical conditions, the gas phase contained significant concentrations of hydrogen and carbon monoxide in addition to water, residual oxygen and carbon dioxide. Traces of methane and C2-C3 hydrocarbons were also detected (Figs. 1 and 2). These gases result from a complex chemistry including pyrolysis, steam reforming and water-gas shift. Under supercritical conditions, all these compounds were extensively eliminated by oxidation. Under supercritical conditions the residual solids contained less than 1% organic matter. By X-ray diffraction hydroxyapatite, quartz and kaliophilite were identified in the residual solids.These results confirm that supercritical water oxidation is a new sludge treatment concept of great interest. The degree of conversion of organic carbon is high, while liquid and especially gaseous by- products are produced in minor amounts compared to subcritical conditions. Temperatures higher than 430°C would be needed for substantial nitrogen removal

    Persistent time intervals between features in solar flare hard X-ray emission

    Get PDF
    Several solar hard X-ray events (greater than 100 keV) were observed simultaneously with identical instruments on the Venera 11, 12, 13, 14, and Prognoz spacecraft. High time resolution (= 2 ms) data were stored in memory when a trigger occurred. The observations of modulation are presented with a period of 1.6 s for the event on December 3, 1978. Evidence is also presented for fast time fluctuations from an event on November 6, 1979, observed from Venera 12 and another on September 6, 1981, observed from the Solar Maximum Mission. Power spectrum analysis, epoch folding, and Monte Carlo simulation were used to evaluate the statistical significance of persistent time delays between features. The results are discussed in light of the MHD model proposed by Zaitsev and Stepanov

    NDM-526: INVESTIGATION OF STABLE AND UNSTABLE FIBER-REINFORCED ELASTOMERIC ISOLATORS

    Get PDF
    Fiber-reinforced elastomeric isolators (FREIs) are a potentially low-cost alternative to conventional steel-reinforced elastomeric isolators. FREIs can exhibit a non-linear horizontal force-displacement relationship characterized by a softening and stiffening phase, similar to other adaptive isolation devices such as the triple friction pendulum. This non-linear relationship is a consequence of unique deformations that occur during horizontal displacement denoted as rollover, which causes softening, and full rollover, which causes stiffening. The magnitude of the softening due to rollover is primarily governed by the width-to-total height aspect ratio of the FREI. If the aspect ratio is low, below about 2.5, the isolator may be susceptible to horizontal instability where the tangential stiffness becomes negative before increasing due to full rollover. Design codes prevent the use of an isolation system susceptible to horizontal instability within the design displacement. In this paper, experimental testing is used to calibrate a numerical model of a base isolated structure using horizontally unstable and stable FREIs. The performance of the structure is evaluated based on peak displacement of the isolation layer and peak acceleration of the base isolated structure. For the isolators considered, it is shown that the horizontal instability does not have a negative impact on the performance of the structure. It is postulated that some level of horizontal instability may be allowed in the design of unbonded FREIs

    Identifying and Preventing Pain in Animals

    Get PDF
    Animals are routinely subjected to painful procedures, such as tail docking for puppies, castration for piglets, dehorning for dairy calves, and surgery for laboratory rats. Disease and injury, such as tumours in mice and sole ulcers on the feet of dairy cows, may also cause pain. In this paper we describe some of the ways in which the pain that animals experience can be recognized and quantified. We also describe ways in which pain can be avoided or reduced, by reconsidering how procedures are performed and whether they are actually required. Ultimately, reducing the pain that animals experience will require scientific innovation paired with changed cultural values, and willingness to address regulatory, technological and economic constraints

    Three precise gamma-ray burst source locations

    Get PDF
    The precise source regions of three moderately intense gamma ray bursts are derived. These events were observed with the first interplanetary burst sensor network. The optimum locations of the detectors, widely separated throughout the inner solar system, allowed for high accuracy, over-determined source fields of size 0.7 to 7.0 arc-min(2). All three locations are at fairly high galactic latitude in regions of low source confusion; none can be identified with a steady source object. Archived photographs were searched for optical transients that are able to be associated with these source fields; one such association was made

    A second catalog of gamma ray bursts: 1978 - 1980 localizations from the interplanetary network

    Get PDF
    Eighty-two gamma ray bursts were detected between 1978 September 14 and 1980 February 13 by the experiments of the interplanetary network (Prognoz 7, Venera 11 and 12 SIGNE experiments, Pioneer Venus Orbiter, International Sun-Earth Explorer 3, Helios 2, and Vela). Sixty-five of these events have been localized to annuli or error boxes by the method of arrival time analysis. The distribution of sources is consistent with isotropy, and there is no statistically convincing evidence for the detection of more than one burst from any source position. The localizations are compared with those of two previous catalogs
    corecore