1,741 research outputs found
Estimating Black Hole Masses in Active Galaxies Using the Halpha Emission Line
It has been established that virial masses for black holes in low-redshift
active galaxies can be estimated from measurements of the optical continuum
strength and the width of the broad Hbeta line. Under various circumstances,
however, both of these quantities can be challenging to measure or can be
subject to large systematic uncertainties. To mitigate these difficulties, we
present a new method for estimating black hole masses. From analysis of a new
sample of broad-line active galactic nuclei, we find that Halpha luminosity
scales almost linearly with optical continuum luminosity and that a strong
correlation exists between Halpha and Hbeta line widths. These two empirical
correlations allow us to translate the standard virial mass system to a new one
based solely on observations of the broad Halpha emission line.Comment: to appear in Apj; 8 pages; 5 figures; uses emulateapj5.st
Black-Hole Mass and Growth Rate at High Redshift
We present new H and K bands spectroscopy of 15 high luminosity active
galactic nuclei (AGNs) at redshifts 2.3-3.4 obtained on Gemini South. We
combined the data with spectra of additional 29 high-luminosity sources to
obtain a sample with 10^{45.2}<\lambda L_{\lambda}(5100A)<10^{47.3} ergs/sec
and black hole (BH) mass range, using reverberation mapping relationships based
on the H_beta method, of 10^{8.8}-10^{10.7} M_sun. We do not find a correlation
of L/L_Edd with M_BH but find a correlation with \lambda L_{\lambda}(5100A)
which might be due to selection effects. The L/L_Edd distribution is broad and
covers the range ~0.07-1.6, similar to what is observed in lower redshift,
lower luminosity AGNs. We suggest that this consistently measured and
calibrated sample gives the best representation of L/L_Edd at those redshifts
and note potential discrepancies with recent theoretical and observational
studies. The lower accretion rates are not in accord with growth scenarios for
BHs at such redshifts and the growth times of many of the sources are longer
than the age of the universe at the corresponding epochs. This suggests earlier
episodes of faster growth at z>~3 for those sources. The use of the C IV method
gives considerably different results and a larger scatter; this method seems to
be a poor M_BH and L/L_Edd estimator at very high luminosity.Comment: 8 pages (emulateapj), 4 figures. Accepted for publication in Ap
Locating Star-Forming Regions in Quasar Host Galaxies
We present a study of the morphology and intensity of star formation in the
host galaxies of eight Palomar-Green quasars using observations with the Hubble
Space Telescope. Our observations are motivated by recent evidence for a close
relationship between black hole growth and the stellar mass evolution in its
host galaxy. We use narrow-band [O II] 3727, H, [O III]
5007 and Pa images, taken with the WFPC2 and NICMOS
instruments, to map the morphology of line-emitting regions, and, after
extinction corrections, diagnose the excitation mechanism and infer
star-formation rates. Significant challenges in this type of work are the
separation of the quasar light from the stellar continuum and the
quasar-excited gas from the star-forming regions. To this end, we present a
novel technique for image decomposition and subtraction of quasar light. Our
primary result is the detection of extended line-emitting regions with sizes
ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus,
powered primarily by star formation. We determine star-formation rates of order
a few tens of M/yr. The host galaxies of our target quasars have
stellar masses of order M and specific star formation rates
on a par with those of M82 and luminous infrared galaxies. As such they fall at
the upper envelope or just above the star-formation mass sequence in the
specific star formation vs stellar mass diagram. We see a clear trend of
increasing star formation rate with quasar luminosity, reinforcing the link
between the growth of the stellar mass of the host and the black hole mass
found by other authors.Comment: Accepted for publication in M.N.R.A.
A view of the narrow-line region in the infrared: active galactic nuclei with resolved fine-structure lines in the Spitzer archive
We queried the Spitzer archive for high-resolution observations with the
Infrared Spectrograph of optically selected active galactic nuclei (AGN) for
the purpose of identifying sources with resolved fine-structure lines that
would enable studies of the narrow-line region (NLR) at mid-infrared
wavelengths. By combining 298 Spitzer spectra with 6 Infrared Space Observatory
spectra, we present kinematic information of the NLR for 81 z<=0.3 AGN. We used
the [NeV], [OIV], [NeIII], and [SIV] lines, whose fluxes correlate well with
each other, to probe gas photoionized by the AGN. We found that the widths of
the lines are, on average, increasing with the ionization potential of the
species that emit them. No correlation of the line width with the critical
density of the corresponding transition was found. The velocity dispersion of
the gas, sigma, is systematically higher than that of the stars, sigma_*, in
the AGN host galaxy, and it scales with the mass of the central black hole,
M_BH. Further correlations between the line widths and luminosities L, and
between L and M_BH, are suggestive of a three dimensional plane connecting
log(M_BH) to a linear combination of log(sigma) and log(L). Such a plane can be
understood within the context of gas motions that are driven by AGN feedback
mechanisms, or virialized gas motions with a power-law dependence of the NLR
radius on the AGN luminosity. The M_BH estimates obtained for 35 type 2 AGN
from this plane are consistent with those obtained from the M_BH-sigma_*
relation.Comment: ApJ, revised to match the print versio
- …