3,851 research outputs found

    A Weakly nonlinear theory for spiral density waves excited by accretion disc turbulence

    Full text link
    We develop an analytic theory to describe spiral density waves propagating in a shearing disc in the weakly nonlinear regime. Such waves are generically found to be excited in simulations of turbulent accretion disks, in particular if said turbulence arises from the magneto-rotational instability (MRI). We derive a modified Burgers equation governing their dynamics, which includes the effects of nonlinear steepening, dispersion, and a bulk viscosity to support shocks. We solve this equation approximately to obtain nonlinear sawtooth solutions that are asymptotically valid at late times. In this limit, the presence of shocks is found to cause the wave amplitude to decrease with time as 1/t^2. The validity of the analytic description is confirmed by direct numerical solution of the full nonlinear equations of motion. The asymptotic forms of the wave profiles of the state variables are also found to occur in MRI simulations indicating that dissipation due to shocks plays a significant role apart from any effects arising from direct coupling to the turbulence

    Development of an invasively monitored porcine model of acetaminophen-induced acute liver failure

    Get PDF
    Background: The development of effective therapies for acute liver failure (ALF) is limited by our knowledge of the pathophysiology of this condition, and the lack of suitable large animal models of acetaminophen toxicity. Our aim was to develop a reproducible invasively-monitored porcine model of acetaminophen-induced ALF. Method: 35kg pigs were maintained under general anaesthesia and invasively monitored. Control pigs received a saline infusion, whereas ALF pigs received acetaminophen intravenously for 12 hours to maintain blood concentrations between 200-300 mg/l. Animals surviving 28 hours were euthanased. Results: Cytochrome p450 levels in phenobarbital pre-treated animals were significantly higher than non pre-treated animals (300 vs 100 pmol/mg protein). Control pigs (n=4) survived 28-hour anaesthesia without incident. Of nine pigs that received acetaminophen, four survived 20 hours and two survived 28 hours. Injured animals developed hypotension (mean arterial pressure; 40.8+/-5.9 vs 59+/-2.0 mmHg), increased cardiac output (7.26+/-1.86 vs 3.30+/-0.40 l/min) and decreased systemic vascular resistance (8.48+/-2.75 vs 16.2+/-1.76 mPa/s/m3). Dyspnoea developed as liver injury progressed and the increased pulmonary vascular resistance (636+/-95 vs 301+/-26.9 mPa/s/m3) observed may reflect the development of respiratory distress syndrome. Liver damage was confirmed by deterioration in pH (7.23+/-0.05 vs 7.45+/-0.02) and prothrombin time (36+/-2 vs 8.9+/-0.3 seconds) compared with controls. Factor V and VII levels were reduced to 9.3 and 15.5% of starting values in injured animals. A marked increase in serum AST (471.5+/-210 vs 42+/-8.14) coincided with a marked reduction in serum albumin (11.5+/-1.71 vs 25+/-1 g/dL) in injured animals. Animals displayed evidence of renal impairment; mean creatinine levels 280.2+/-36.5 vs 131.6+/-9.33 mumol/l. Liver histology revealed evidence of severe centrilobular necrosis with coagulative necrosis. Marked renal tubular necrosis was also seen. Methaemoglobin levels did not rise >5%. Intracranial hypertension was not seen (ICP monitoring), but there was biochemical evidence of encephalopathy by the reduction of Fischer's ratio from 5.6 +/- 1.1 to 0.45 +/- 0.06. Conclusion: We have developed a reproducible large animal model of acetaminophen-induced liver failure, which allows in-depth investigation of the pathophysiological basis of this condition. Furthermore, this represents an important large animal model for testing artificial liver support systems

    Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck

    Full text link
    A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration

    The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission

    Get PDF
    Abstract The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth’s magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly’s Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to \u3e0.5 MeV (with capabilities to measure up to \u3e1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to \u3e0.5 MeV, and also measures total ion energy distributions from 45 keV to \u3e0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth’s magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth’s magnetotail during the about 6 months that comprise orbital phase 2

    Environmental risk assessment of genetically modified plants - concepts and controversies

    Get PDF
    Background and purpose: In Europe, the EU Directive 2001/18/EC lays out the main provisions of environmental risk assessment (ERA) of genetically modified (GM) organisms that are interpreted very differently by different stakeholders. The purpose of this paper is to: (a) describe the current implementation of ERA of GM plants in the EU and its scientific shortcomings, (b) present an improved ERA concept through the integration of a previously developed selection procedure for identification of non-target testing organisms into the ERA framework as laid out in the EU Directive 2001/18/EC and its supplement material (Commission Decision 2002/623/EC), (c) describe the activities to be carried out in each component of the ERA and (d) propose a hierarchical testing scheme. Lastly, we illustrate the outcomes for three different crop case examples. Main features: Implementation of the current ERA concept of GM crops in the EU is based on an interpretation of the EU regulations that focuses almost exclusively on the isolated bacteria-produced novel proteins with little consideration of the whole plant. Therefore, testing procedures for the effect assessment of GM plants on non-target organisms largely follow the ecotoxicological testing strategy developed for pesticides. This presumes that any potential adverse effect of the whole GM plant and the plant-produced novel compound can be extrapolated from testing of the isolated bacteriaproduced novel compound or can be detected in agronomic field trials. This has led to persisting scientific criticism. Results: Based on the EU ERA framework, we present an improved ERA concept that is system oriented with the GM plant at the centre and integrates a procedure for selection of testing organisms that do occur in the receiving environment. We also propose a hierarchical testing scheme from laboratory studies to field trials and we illustrate the outcomes for three different crop case examples. Conclusions and recommendations: Our proposed concept can alleviate a number of deficits identified in the current approach to ERA of GM plants. It allows the ERA to be tailored to the GM plant case and the receiving environment

    HUNGARIAN EXPERIENCE IN STRUCTURAL DESIGN CODING (HISTORICAL ANTECEDENTS OF EUROCODE-2)

    Get PDF
    This paper gives review of the historical antecedents of Eurocode-2 in Hungary and East Europe. The method of permissible stresses, using uniform safety factor was first changed in 1950 in Hungary by the semi-probabilistic method using partial safety factors. This new method was accepted with some resistance on the part of the leading structural engineers. Nevertheless most of the East-European countries accepted the new method with some political overtones', to be follow the Soviet example. The authors assert in the papaer that due to the economic necessities. Hungary and the other East European countries gained experience with the regulations affording less safety than the EC2, and this offers an interesting set of experience to the West European countries which have intoduced or are introducing the semi-probabilistic procedure. The most significant point all the experience is the recognition that only one part of the parameters in the structural analysis determining safety can be handled statistically. During design the statistically not significant data such as the error of the structural model must also be taken into consideration. Based on the experience, the authors propose an alternative design method

    Evidence of continued injecting drug use after attaining sustained treatment-induced clearance of the hepatitis C virus: implications for reinfection

    Get PDF
    Background: People who inject drugs (PWID) are at the greatest risk of hepatitis C virus (HCV) infection, yet are often denied immediate treatment due to fears of on-going risk behaviour. Our principal objective was to examine evidence of continued injecting drug use among PWID following successful treatment for HCV and attainment of a sustained viral response (SVR). Methods: PWID who attained SVR between 1992 and June 2012 were selected from the National Scottish Hepatitis C Clinical Database. Hospitalisation and mortality records were sourced for these patients using record linkage techniques. Our primary outcome variable was any hospitalisation or death, which was indicative of injecting drugs post-SVR. Results: The cohort comprised 1170 PWID (mean age at SVR 39.6y; 76% male). The Kaplan Meier estimate of incurring the primary outcome after three years of SVR was 10.59% (95% CI, 8.75–12.79) After adjusting for confounding, the risk of an injection related hospital episode or death post-SVR was significantly increased with advancing year of SVR: AHR:1.07 per year (95% CI, 1.01–1.14), having a pre-SVR acute alcohol intoxication-related hospital episode: AHR:1.83 (95% CI, 1.29–2.60), and having a pre-SVR opiate or injection-related hospital episode: AHR:2.59 (95% CI, 1.84–3.64). Conclusion: Despite attaining the optimal treatment outcome, these data indicate that an increasing significant minority of PWID continue to inject post-SVR at an intensity which leads to either hospitalisation or death and increased risk of reinfection

    The plight of the sense-making ape

    Get PDF
    This is a selective review of the published literature on object-choice tasks, where participants use directional cues to find hidden objects. This literature comprises the efforts of researchers to make sense of the sense-making capacities of our nearest living relatives. This chapter is written to highlight some nonsensical conclusions that frequently emerge from this research. The data suggest that when apes are given approximately the same sense-making opportunities as we provide our children, then they will easily make sense of our social signals. The ubiquity of nonsensical contemporary scientific claims to the effect that humans are essentially--or inherently--more capable than other great apes in the understanding of simple directional cues is, itself, a testament to the power of preconceived ideas on human perception
    corecore