228 research outputs found

    Constraining the Location of Gamma-Ray Flares in Luminous Blazars

    Full text link
    Locating the gamma-ray emission sites in blazar jets is a long-standing and highly controversial issue. We investigate jointly several constraints on the distance scale r and Lorentz factor Gamma of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars, FSRQs). Working in the framework of one-zone external radiation Comptonization (ERC) models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Gamma*theta <~ 1, from an upper limit on the synchrotron self-Compton (SSC) luminosity L_SSC <~ L_X, and from an upper limit on the efficient cooling photon energy E_cool,obs <~ 100 MeV. These three constraints are particularly strong for sources with low accretion disk luminosity L_d. The commonly used intrinsic pair-production opacity constraint on Gamma is usually much weaker than the SSC constraint. The SSC and cooling constraints provide a robust lower limit on the collimation parameter Gamma*theta >~ 0.1 - 0.7. Typical values of r corresponding to moderate values of Gamma ~ 20 are in the range 0.1 - 1 pc, and are determined primarily by the observed variability time scale t_var,obs. Alternative scenarios motivated by the observed gamma-ray/mm connection, in which gamma-ray flares of t_var,obs ~ a few days are located at r ~ 10 pc, are in conflict with both the SSC and cooling constraints. Moreover, we use a simple light travel time argument to point out that the gamma-ray/mm connection does not provide a significant constraint on the location of gamma-ray flares. We argue that spine-sheath models of the jet structure do not offer a plausible alternative to external radiation fields at large distances, however, an extended broad-line region is an idea worth exploring.Comment: 21 pages, 10 figures, accepted for publication in Ap

    Energetic Constraints on a Rapid Gamma-Ray Flare in PKS 1222+216

    Full text link
    We study theoretical implications of a rapid Very-High-Energy (VHE) flare detected by MAGIC in the Flat-Spectrum Radio Quasar PKS 1222+216. The minimum distance from the jet origin at which this flare could be produced is 0.5 pc. A moderate Doppler factor of the VHE source, D_{VHE} ~ 20, is allowed by all opacity constraints. The concurrent High-Energy (HE) emission observed by Fermi provides estimates of the total jet power and the jet magnetic field strength. Energetic constraints for the VHE flare are extremely tight: for an isotropic particle distribution they require a huge co-moving energy density in the emitting region and a very efficient radiative process. We disfavor hadronic processes due to their low radiative efficiency, as well as the synchrotron scenario recently proposed for the case of HE flares in the Crab Nebula, since the parameters needed to overcome the radiative losses are quite extreme. The VHE emission can be explained by the Synchrotron Self-Compton (SSC) mechanism for D_{VHE} ~ 20 or by the External Radiation Compton (ERC) mechanism involving the infrared radiation of the dusty torus for D_{VHE} ~ 50. After discussing several alternative scenarios, we propose that the extreme energy density constraint can be satisfied when the emission comes from highly anisotropic short-lived bunches of particles formed by the kinetic beaming mechanism in magnetic reconnection sites. By focusing the emitting particles into very narrow beams, this mechanism allows one to relax the causality constraint on the source size, decreasing the required energy density by 4 orders of magnitude.Comment: 12 pages, 2 figures, accepted for publication in MNRA

    Long-term optical spectroscopic variations in blazar 3C 454.3

    Full text link
    Characterisation of the long-term variations in the broad line region in a luminous blazar, where Comptonisation of broad-line emission within a relativistic jet is the standard scenario for production of gamma-ray emission that dominates the spectral energy distribution. We analysed ten years of optical spectroscopic data from the Steward Observatory for the blazar 3C 454.3, as well as gamma-ray data from the Fermi Large Area Telescope (LAT). The optical spectra are dominated by a highly variable non-thermal synchrotron continuum with a prominent Mg II broad emission line. The line flux was obtained by spectral decomposition including significant contribution from the Fe II pseudo-continuum. Three methods were used to characterise variations in the line flux: (1) stacking of the continuum-subtracted spectra, (2) subtracting the running mean light curves calculated for different timescales, and (3) evaluating potential time delays via the discrete correlation function (DCF). Despite very large variations in the gamma-ray and optical continua, the line flux changes only moderately (< 0.1 dex). The data suggest that the line flux responds to a dramatic change in the blazar activity from a very high state in 2010 to a deep low state in 2012. Two interpretations are possible: either the line flux is anti-correlated with the continuum or the increase in the line luminosity is delayed by ~600 days. If this time delay results from the reverberation of poorly constrained accretion disc emission in both the broad-line region (BLR) and the synchrotron emitting blazar zone within a relativistic jet, we would obtain natural estimates for the BLR radius [R_{BLR,MgII} >~ 0.28 pc] and for the supermassive black hole mass [M_SMBH ~ 8.5x10^8 M_sun]. We did not identify additional examples of short-term 'flares' of the line flux, in addition to the previously reported case observed in 2010.Comment: 8 pages, 7 figures, published in A&A, replaced to match the titl

    The effect of poloidal velocity shear on the local development of current-driven instabilities

    Full text link
    We perform a local (short-wavelength) linear stability analysis of an axisymmetric column of magnetized plasma with a nearly toroidal magnetic field and a smooth poloidal velocity shear by perturbing the equations of relativistic magnetohydrodynamics. We identify two types of unstable modes, which we call 'exponential' and 'overstable', respectively. The exponential modes are present in the static equilibria and their growth rates decrease with increasing velocity shear. The overstable modes are driven by the effects of velocity shear and dominate the exponential modes for sufficiently high shear values. We argue that these local instabilities can provide an important energy dissipation mechanism in astrophysical relativistic jets. Strong co-moving velocity shear arises naturally in the magnetic acceleration mechanism, therefore it may play a crucial role in converting Poynting-flux-dominated jets into matter-dominated jets, regulating the global acceleration and collimation processes, and producing the observed emission of blazars and gamma-ray bursts.Comment: 8 pages, 5 figures, submitted to MNRA

    A new cell primo-culture method for freshwater benthic diatom communities

    Get PDF
    A new cell primo-culture method was developed for the benthic diatom community isolated from biofilm sampled in rivers. The approach comprised three steps: (1) scraping biofilm from river pebbles, (2) diatom isolation from biofilm, and (3) diatom community culture. With a view to designing a method able to stimulate the growth of diatoms, to limit the development of other microorganisms, and to maintain in culture a community similar to the original natural one, different factors were tested in step 3: cell culture medium (Chu No 10 vs Freshwater “WC” medium modified), cell culture vessel, and time of culture. The results showed that using Chu No 10 medium in an Erlenmeyer flask for cell culture was the optimal method, producing enough biomass for ecotoxicological tests as well as minimising development of other microorganisms. After 96 h of culture, communities differed from the original communities sampled in the two rivers studied. Species tolerant of eutrophic or saprobic conditions were favoured during culture. This method of diatom community culture affords the opportunity to assess, in vitro, the effects of different chemicals or effluents (water samples andindustrial effluents) on diatom communities, as well as on diatom cells, from a wide range of perspectives

    The COSPIX mission: focusing on the energetic and obscured Universe

    Full text link
    Tracing the formation and evolution of all supermassive black holes, including the obscured ones, understanding how black holes influence their surroundings and how matter behaves under extreme conditions, are recognized as key science objectives to be addressed by the next generation of instruments. These are the main goals of the COSPIX proposal, made to ESA in December 2010 in the context of its call for selection of the M3 mission. In addition, COSPIX, will also provide key measurements on the non thermal Universe, particularly in relation to the question of the acceleration of particles, as well as on many other fundamental questions as for example the energetic particle content of clusters of galaxies. COSPIX is proposed as an observatory operating from 0.3 to more than 100 keV. The payload features a single long focal length focusing telescope offering an effective area close to ten times larger than any scheduled focusing mission at 30 keV, an angular resolution better than 20 arcseconds in hard X-rays, and polarimetric capabilities within the same focal plane instrumentation. In this paper, we describe the science objectives of the mission, its baseline design, and its performances, as proposed to ESA.Comment: 7 pages, accepted for publication in Proceedings of Science, for the 25th Texas Symposium on Relativistic Astrophysics (eds. F. Rieger &amp; C. van Eldik), PoS(Texas 2010)25

    First NuSTAR Observations of Mrk 501 within a Radio to TeV Multi-Instrument Campaign

    Get PDF
    We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 1 April and 10 August 2013, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope (LAT), Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, Metsähovi and the F-Gamma consortium. Some of the MAGIC observations were affected by a sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a LIDAR (LIght Detection And Ranging) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the four extended NuSTAR observations) shows evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton model to five simultaneous broadband spectral energy distributions. We find that the synchrotron self-Compton model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission
    • …
    corecore