195,316 research outputs found

    Overall properties of the Gaia DR1 reference frame

    Full text link
    We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the {\it Gaia} DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J20015.0 period. Then we estimate the global rotation between TGAS with {\it Tycho}-2 proper motion systems to investigate the property of the {\it Gaia} DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of {\it Gaia} DR1 reference frame. The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of ∼\sim−0.1-0.1\mas~in {\it Gaia} quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset ∼\sim0.010.01\mas~of the ZZ axis direction of {\it Gaia} DR1 reference frame. The global rotation between TGAS and {\it Tycho}-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.240.24\masyr. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG=−0.38±0.15\omega_{Y_G} = -0.38 \pm 0.15\masyr~and the differential part ωYG′=−0.29±0.19\omega^\prime_{Y_G} = -0.29 \pm 0.19\masyr~around the YGY_G axis of Galactic coordinates, which indicates possible residual rotation in {\it Gaia} DR1 reference frame or problems in the current Galactic kinematical model.Comment: 6 pages, 1 figure. Accepted for publication in A&

    A Near-Infrared Spectroscopic Study of Young Field Ultracool Dwarfs

    Full text link
    We present a near-infrared (0.9-2.4 microns) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth (~10-300 Myr). Our sample is composed of 48 low-resolution (R~100) spectra and 41 moderate-resolution spectra (R>~750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provide consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of ~10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K, Na and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.Comment: Published in ApJ. IDL program for calculating indices (allers13_index.pro) included in the source gzipped ta

    Transient Dynamics and Thermal Stress for Nuclear Rocket Heat-exchanger

    Get PDF
    Transient dynamics and thermal stresses in nuclear rocket heat exchange

    Distributed parameter type of control for a bilinear system

    Get PDF
    Optimal control laws for bilinear system in distributed parameter model - analytical determinatio

    The control of absorption cross-section for a nuclear rocket

    Get PDF
    Control of absorption cross section of nuclear rocket with distributed parameter kinetics using two optimization procedure

    Phase Diffusion in Single-Walled Carbon Nanotube Josephson Transistors

    Get PDF
    We investigate electronic transport in Josephson junctions formed by single-walled carbon nanotubes coupled to superconducting electrodes. We observe enhanced zero-bias conductance (up to 10e^2/h) and pronounced sub-harmonic gap structures in differential conductance, which arise from the multiple Andreev reflections at superconductor/nanotube interfaces. The voltage-current characteristics of these junctions display abrupt switching from the supercurrent branch to resistive branch, with a gate-tunable switching current ranging from 50 pA to 2.3 nA. The finite resistance observed on the supercurrent branch and the magnitude of the switching current are in good agreement with calculation based on the model of classical phase diffusion

    Design and analysis of a wire-driven flexible manipulator for bronchoscopic interventions

    Get PDF
    Bronchoscopic interventions are widely performed for the diagnosis and treatment of lung diseases. However, for most endobronchial devices, the lack of a bendable tip restricts their access ability to get into distal bronchi with complex bifurcations. This paper presents the design of a new wire-driven continuum manipulator to help guide these devices. The proposed manipulator is built by assembling miniaturized blocks that are featured with interlocking circular joints. It has the capability of maintaining its integrity when the lengths of actuation wires change due to the shaft flex. It allows the existence of a relatively large central cavity to pass through other instruments and enables two rotational degrees of freedom. All these features make it suitable for procedures where tubular anatomies are involved and the flexible shafts have to be considerably bent in usage, just like bronchoscopic interventions. A kinematic model is built to estimate the relationship between the translations of actuation wires and the manipulator tip position. A scale-up model is produced for evaluation experiments and the results validate the performance of the proposed mechanism

    Holographic Heat Current as Noether Current

    Full text link
    We employ the Noether procedure to derive a general formula for the radially conserved heat current in AdS planar black holes with certain transverse and traceless perturbations, for a general class of gravity theories. For Einstein gravity, the general higher-order Lovelock gravities and also a class of Horndeski gravities, we derive the boundary stress tensor and show that the resulting boundary heat current matches precisely the bulk Noether current.Comment: Latex, 27 pages, typos corrected, comments added, references adde

    Thermodynamics of Einstein-Proca AdS Black Holes

    Get PDF
    We study static spherically-symmetric solutions of the Einstein-Proca equations in the presence of a negative cosmological constant. We show that the theory admits solutions describing both black holes and also solitons in an asymptotically AdS background. Interesting subtleties can arise in the computation of the mass of the solutions and also in the derivation of the first law of thermodynamics. We make use of holographic renormalisation in order to calculate the mass, even in cases where the solutions have a rather slow approach to the asymptotic AdS geometry. By using the procedure developed by Wald, we derive the first law of thermodynamics for the black hole and soliton solutions. This includes a non-trivial contribution associated with the Proca "charge." The solutions cannot be found analytically, and so we make use of numerical integration techniques to demonstrate their existence.Comment: 35 pages, Improved discussion of cases with logarithmic asymptotic fall off
    • …
    corecore