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Abstract 305“»‘

The two energy and one delayed neutron group kinetics
equations with approximations are employed for the nuclear
rocket in this paper. The perturbation equations for kinetics
are derived with the assumption that the deviation from the
reference flux are small in comparison with the reference
values. The femperature effect due to the change of the Fermi
Ape may be compensated by a feedback loop. The absorption
crosgs-gsection is changed accordingly so that the system will
be made independent of the effect of temperature variation.

The spatial distribution of the(flux and precursor afe

assumed to be sinusoidal in the axial direction of the nuclear
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mization requires the reference flux and precursor exponentially
in time to the maximum power and remalning constant thereafter.

A jump of flux occurs while the reactivity suddenly changes

its value. A second optimization procedure is thus required
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to round off the Jump and to minimize the error for the future
independent of the past disturbance or arbituary starting error.
The reduced kinetics equations are obtained from the per-
turbed equation by introducing exponential weighting function.
The index of performance is choosen to be the integral of the
square errors on perturbed neutron flux and the control effort.
Maximum principle is used to derive the control laws which in
furn determines the absorption cross-section, using the measured
flux as feedback with a variable gain. The response of the flux

and precursor having optimum control under different starting

conditions are determined and plotted. /éljuw



(1) Introduction

(1), (2)

Nuclear rocket requires a fanst start-up with re-
latively high reactivity. The power level may increase six
decades 1in one minute. Lump parameter model of controlling
such a system is given by previous papers(B)’(u)’(5) of

one of the author without linear approximation. In this paper
a distributed parameter model of the nuclear rocket is consid-
ered. The actual control of the reactor is due to the change

of the absorption cross-section by varying the poison from the

control drum in a nuclear rocket.

(2) Kinetics Equations for the Reactor in Distributed Parameters

The two energy and one delayed neutron group re-

(6)

actor Kinetics equations are:

1 dd

UDiWoy - B, 01 + Y(1-B) Zpte + AC = Fp o (1)
_ 1 J¢o
A A A ol (2)
aC
BYZ 02 - NC = F» (3)
where &1, ¢o = fast and thermal neutron flux, respectively,
D1, D2 = fast and thermal diffusion coefficient, regpec-
tively,
ng: Za = removal and absorption crogs-section, respec-
tively, spatial and time dependent.
Zf = figsion cross-section, a constant
A = equivalent decay constant for the one delayed
group case,
C = equivalent concentration of precursor for the .




he
one delayed group case,
B = Tfraction of total numher of fission neutrons
which are delayed
V. = average number of fast neutrons released
per fission.
In the reactor with a relatively large fuel loading density,
the thermal leakage term, VDWU¢p, is small compared to the
fhermal absorption rate. Also, due to the high velocity of
fast neutrons the term for the rate of change of fast neutrons,
i.e. (-%I-%%L ), can be neglected. With these approximations,

Equations (1) and (2) can be written as:

VDivéy - Z_,01 + V(l—6)2f®2 + AC = 0, (4)
a Lo
¢y = =— oo (147°), (5a)
> T
sk
where fo = infinite medium mean 1ife time of neutron = vglz s
. a
. n _ O
where T = reactor periocd = — = —= .
dn 4%z
€ dt
. Lo / . .
Slnce-T—<\(L, Equation (5a) can be approximated as
Za
01 = <= 02 (5p)
sl

with the relation 7T =-§l and neglecting % Int 1n comparison
s
2):

£
with the term 1n(12a¢ Equations (4) and (5b) will give

vz(TZa¢’2) - I %z + v(1-B) Z,65 + AC = O. (6)




e
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Rewrite equation (3)

aC :

V62f¢2 - ANC = "5%: (7)

Where Equation (7) is repeated here for convenience as equ-
ations (6) and (7) form the new set of kinetics equations.

The Fermi age T becomes

T = Tp + Tops TR> > T (8)
where .
TR = Fermi age at reference temperature for graphite-
uranium with hydrogen as coolant.
Tp = increase of Fermi age from reference temperature

to a glven temperature.

(3) Perturbation of Kinetics Equations

During start-up of a nuclear reactor, some disturbances
or errors may introduce to cause the actual variable (flux)
away from the reference (desired) variable (flux). For a
nuclear rocket, it can be assumed that most of the distru-
bances will occur along the axial direction of the reactor.
The neutron flux, for a reactor with reflector, is almost
constant in the transverse direction. The actual variables
can be expressed by the sum of the reference variables and
their deviations. If those deviations resulted from these
unexpected disturbances and errors are small in comparison
with the reference values, the cross product terms of the

deviations may be neglected.
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Thus,

¢-(z,t) ~¢-¢R(z,t) + Ao (z,t), . A¢(z,t)<(<¢R(z,t),

C(z,t)—= Cplz,t) + 4C(z,t), 8C(z,t) <<Cgxlz,t), ()
9

T(Z:t)"TR(Z:t) + TT(Z:t): TT(Z’t)<<TR’

za(z,t)-.-zR(z,t) + AZa(z,t), AZa(z,t) <« ZR(z,t),

where the subscripts R refers to the reference variables.

Substituting above quantities into Equations (6) and (7) and
neglecting the higher order terms, the perturbed reactor kine-

fics equations are:

52 Tp B, ag ) B ae
3z2 [TRZI{¢RC?§ et $§)] - 2ar R (EE‘ +30)

+ V(1-5)zfa¢ - AMAC = 0, (10)

v B.00 - NAC D%E (ac). (11)

(4) Feedback ILoop for Compensating Reactivity Feedback Due

To Temperature Effect

in the Kinetics equaftions the term most effected by tempera-
ture (including density) is the age, Tp- If a feedback loop
is introduced such that the change of age due to temperature,

T can be compensated by varying the absorption cross-section,

T
the perturbed kinetics equations derived from Equations (10)
and (11) will be independent of temperature. Thus, a much
more simpler mathematics form can be obtained. This idea can
be achieved by letting

AZa(z,t) = A3, (z,t) + AZ?(z,t) (12)




and

d2
372 [T

(TT ) AS
S0 (— + ] - =_¢ 2 = 0. (13)
R'R'R'Tp Sr R'R =g

Then, the perturbed kinetics equation (10) becomes

32 AS A® AT Ad
[T2 0, (= + ==)] - =6, (&2 + 22) 4 v(1-B )= A0
522 R RR Sr o R R ZR CN f
+ AMAC = 0. (14)

The feedback control can be obtained by solving Equation (13).

The solution may be given in the form

822(2,%) = ey ) 0z,8) 'ge_ [3htp0R(€,6)1a8  (15)

where G(z,&) 1s the Green's function of the problem.

(5) The Reference Variables - First Optimization

Since the flux distribution in a reactor is essentially
sinusoidal axially, it 1s reasonable to assume the reference
variables as

°r

¢(t) sin — z,

SE

c c(t) sin

R Z .

Il

SSE

Substituting the above equations into Equations (6) and (7),

one obtainsg

e s - am s,

and
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72 Lon c(e)] = v(¢) (16)
where
AVBS,
v(t) = = - A, o¥y(t)Sy,
ZRTR'Z) + g - V(1-e>)zf

The reference absorption cross-section, ZR, is assumed inde-
pendent of z for the reference solutions in Equations (6) and
(7). The power program or ¢ in nuclear rocket requires that
the ¢ starts at a low level ¢% and reaches a high level in a
minimum time. It is well known from the optimum theory that
for a bounded contrcl the optimum process requires the control
variable y(t) operating at its extreme value, ¥ or zero, i.e.
bang-bang type control system. Thus the following reference
variable is obtained for this purpose.

¢%ewt sin

¢_(z,t) = Tz
R™” Y/ /
0&t€Ty
o aa vt Lo
CR(z,t) = Coe'” sin 5 z
(17)

¢R(z,t) = 6811 5ip % z

: Ty <t ¢T2
CR(z,t) = BT sin-% z

where ¢,'s, Co's, v and T, are constants. The reference absorp-
tion cross-section, ZR? is, therefore, found to be a constant

at each time interval,



a + A A2
d>o - VBZf Co 1
0¢t €T,
sz
% = —_ (1 - %)j
1+TR(I)
(18)
b _ A b
¢O - VBZ CO 1 (
f Ty<t JT>
vZ
b f
Zp = T e
1#+7R(7)

where Cg = CB since CR is continuous at t = Tq.
It is noted that a jump of reference flux occurs at t =Ty
. a b
since ¢ 7o
Equation (17) gives the solution of a time optimum prob-

lem by Equations (6) and (7) with the reactivity constraint

Pc. Thus,N vzf ) ) ;
keff:Za(1+TRIrZ:) =1_%=1+¥:§=1+Akq (19)
or
p = é% = ‘§%¥—X £ Po (the constraint),

(6) Transformation of Variables for the Perturbed Kinetics

Equations
Exponential weighting functions to the varlables Ad(z,t)

and AC(z,t) in Equations (14) and (11)are introduced as

¢§(Z’t) - A@(Z,t)

¢aevt ’
0

tg T2 (20)

a - ACSZ,t}
Cq(Z,t) cseﬁy .
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Thus Equations (14) and (11) become

0% r.a ,a aq 42 Ce 2
TR 37212 z,£)] + [¥(1-p)2, - 3] o (z,t) + 2 =3 C (z,t)

R ¢q.
_ i (z,1) ,
¢%evt
(21)
O ®(z,t) = VB 9§.¢a(z t) - (A )e&(z,t)
-a.gq’ fcaq’ +qu: N
where

u(z,t) = —TR-222[¢§(z,t)AZ%(z,t)] + o2(z,t)851 (=, ), (22)

By substituting the value of ¢§(z,t) in equation (17) into
Equation (22), one obtailns

2

w¥(z,t) = 62 Yt [-7 sin Tz AS,(z,t) + sin %zAZl(z,t)]'

R 3z2 4
(23)
Equation (21) is further transformed by assuming the per-

turbed flux follows a sinusoidal distribution in the axial

direction, thus

2(t) sin %z,

Il

(24)

Xﬁ(t) sin %z.

il

QPO W

The following equations are obtained by substituting equation

(18) and (24) into equation (21)

283 (6) + a%x3(t) - ui(t) = 0,

dx8 = (ay) XE(6) - (vy) X3(¢), t{Ta (25)

dt

A
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where
> AVRS
-A = -7 lr_za_za.',Vl_czZ:_ f
R,z "R "R (1-8)z, MY (26)
and
u?(t) sin Lz = -1 o (A5, (z,t) sin Zz] + AS,(z,t) sin 2z
£ RBzz ) 1 ? 2=,
(27)
Equation (27) admit a solution of the form
AZl(z,t) —»AZl(t) = *——lﬂ?z u?(t) (28)
1+TR -Eg

(7) The Control System - Second Optimization

If the system starts with the right initial condition in
Co/®o in Equation (18) and the right control with a jump of

a b

ZR from ZR to ZR

variables will follow equation (17) with no error. However,

at £t = Ty, then theoretically the reactor

the actual initial condition is not always the value given
in equation (18). Thus the control in 2, will differ from
ZR by the amount AZa = A2y + A32. Again the quantity
AS,{z,t) is determined from equation (28) if the control
u(t) 1is known. The problem now is to find u(t) for any
arbituary starting conditions of X3 (t) and X=(t) for equ-
ation (25).

The con fol system should be designed such that the
variables would follow as close as possible the reference

variables given in equation (17). TFor an ideal system the

variables X3, Xo, and u in equation (25) should be identically
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zero. With this in mind we are geeking for a minimum of a
functional known as index of performance.

In the reactor start-up problem, perturbed neutron flux
and the control effort are of interest. An index of per-

formance is, therefore, chosen as
1= [ {017+ 1(0) Tu(0)1?) a0+ 72 {Ixi(e)]7
1
+ 1(0) [u(0)12} do, (29)

where M(o) is welghting function. The welghting function

is assumed to bhe continuous except at the time t = Ty where
it may be discontinuous. It 1s noted that the lower 1limit

is the present time t in equation (29). This is in con-
sistant with the principle of Dynamic Programming(7), which
is to minimize the integral from the time to go no matter
where your present time i1s. If we can measure the perturbed
flux X3 at the present time it is possible to find a con-
trol u(t) and thus AZ;(t) using Xy as feedback with a vari-
able gain. In this manner the functional I in equation (29)
will be kept at a minimum subjected to distrubance at any other
time, not only to errors at the starting conditions. The
above viewpoint 1is very important in that the source or cause
of disturbance is immaterial as far as the ocutput % (t) can
be detected and readjusted by the control element producing

AS,(t).
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We may define a new variable Xs(o) such that

Xa(o) = T,

g=To

thus,

Xs(o) = J'% {ix2(0)]2 + "(G)Iua(e)]2}1e

o=t -
+ fo { [X?(e)]g + n(8) [ub(e)]2l SCH (30)
6=T, ;

(8) Application of Maximum Principle for a System of Algebraic

and Differential Equations

By rearranging equation (25) and differentiating equ-

ation (30) one obtains

0= [-a°x8(0) + 2%%8(0) - u?(0)] = £y,
938(0) = (ty) % (o) - (o) (o) = T2, (51)
95309 - [x(0)12 + n [ (0)]? = Ta.

where ¢ 1s the future time.

The optimum system is defined as the system for which

S(T2) = CiXi(osz)’

He Mo

=1
Gy = Cp = 0, Ca= 1 (32)

is a minimum with respect to u(o). The Hamiltonian is

given in Appendix A 1is

H =
i

p, (o) £y, (33)

I Ma

1

where p, are the auxiliary variables.




b
Thus,
H = py(o) [-A%3(0) + &% x2(0) - u"(0)]
+ p2(0) [0y x5 (o) - (o)x3(0)] + palo)  {fxi(0)]®
+ P (o) 12} (34)

A sufficient condition for a minimum of S is that the
Hamiltonian H be maximized with respect to the control vector
at all time. For system with unsaturated perfurbed control

we have from equation (A15) in Appendix A,

dn_

a
Bu*

u2(0) = B (36)

where the asterisk denotes the optimum condition.

= 0 = -py (o) + pa(c) 27 ui . (35)

or

In order to complete the derivation of the optimum con-
trol law, it is necessary to develop the differential equ-
ations(8) for the auxiliary variables. From equations (A13)

and (Al4) in Appendix A we have

OH .
0=y =1
dp; (o) OH .
do - - SXi. i=2,3. (37)

Applying equation (37) to equation (34) one obtains



[o)
'
]

|

(O
jre

(o
3
w

o
-+

The

are

~1”-

= = [pa(0) (=A%) + palo) (A+y) + “pal(o)xy(o)]. (:8)
= - pr(0) A% + pa(o) (amy), (39)
=0, t €0 LTy (40)

free terminal conditons or natural boundary conditions

obtained from equation (A9) and (32).

pe(0=Tp) = - C = 0. (41)

Tp) = - Ca = -1, (42)

Il

pr(’

It is concluded from equations (40) and (42) that the quantity

pa(o) = -1 for all o, (43)

Sibstituting equation (43) into equations (38), (39) and

(36) one obtains

-£%py (o) + (AHy) pa(o) - 2X,(0) = O,

dI;;_’O_ _p8 p1(0) + (aro)pa( )s
u (o) = = S pa(o), .

Similarily, the differential equation of auxiliary variables

for interval Tlgcjsié can be obtained by changing super-

script a to b and vy to zero.
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(9) Optimum Control Law

In order to determine the Optimum Control law, 1t is nec-
essary to solve the algebraic and differentlal equations for
the auxiliary variables and the state variables. Equatlons
gsimilar to Fquations (25) and (44) are given here for the

interval T1<t<

~aPx0(o) + A°XB(0) - ui(o) = O. (45)
L x2(0) = xR (o) - A2 (o), (46)
~8%py (0) + npa2(0) - 2xi(a) = 0, (47)
%—apg(o) = -4%p1 (o) + wpal(o) . (48)

() = - 55 pa(o) (49)

Eliminating p; from Equations (49) and (47)
b
b
wi(o) = Aglape + X310, (50)
a

where a° = W(Ab)g, (51)

Substituting Equation (50) into (45) gives

XE = % [-2p2 + 2(1+a

2a.

Py %071, (c2)

The following Equation can be obtained by substituting
Equation (£2) into Equation (46):

o
14+a.? 2[1+a ]

[——+7\-

55 + M p2 = 0, (53)
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By solving py from Equation (47) and substituting into Equ-

ation (48) we have

b d
2X1 - g5 P2 = O. (54 )

Solution of ps and X? from Equation (53) and (F4) are

p2(0) = () cos h @®(o-t) + Fo(t) sin n o®(o-t) (¢ 5
XE(@) = 95 [Fi(t) sin n ap(o-t) + Fo(t) cos h wb(a—t)],(56)
where
b ab
W = %\/h-— 5T, (¢ 7)
1+a

% %\ for small value of a’
the quantity t is carried as a parameter.

From Equation (52) one obtalns

Xg - - _;B.{Fl(t)[x cos h wb(o—t) - af [1+ab] sin h wb(o—t)]
2a

+ Fo(t) [Asin h o®(o-t) - &°[14”] cos h mb(c—t)]}‘

(58)
Using the condition that XE is equal to the measured value

at ¢ = t. Equation (56) becomes

b
X2 (8) = & Falt), (59)

Using boundary condition (41) for Equation (55) one obtains
Fo(t) = - Folt) tan h o (Ta-t)

w
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The Optimum control law is obtained from Equation (50), (5%)

and (60)
b b AP b
u, (t) = ug(o) = =— [-7p2 + 2%y (t)]
o=t 2ab o=t
bb
- i‘*—l%ﬁl [lE tan h @’(Te-t) + 1] T, {t £Ts
a w

(61)

It should be noted that there 1s a Jjump of reference X;
at t = T; (see Figure 1). This discontinuity is due to the
simplified mathematics expression by dropping the g%l term
in the Kinetics equation (6). However, the jump does not
physically exist in the reactor if the term-%%‘is not dropped
from equation (1). In order to modify this situation, it is
required that the actual flux be continuous every where. This
requirement is equivalent to let the precursor and its deriva-
tives be continuous at t = Tp. From this point of view, the
conditions which will be used for derivation of the opfimum
control law in the interval t{ Ty are imposed as follows:

a) The natural boundary condition given in Equation (41),

b) The initial condition expressed as Xq = X3 (t)

(Measured value), o (62)

&) 1In order to keep precursor continuous at t = Ty,

it is required that

= x5 (o) (63)

a(o)
X2 o0=T1y 0=¢
d) The requirement for the continuity of derivative




o o

-10-=
ol precursor gt b= Ty Ts mathemat teally oxpronsed
as (oo Appendix B)
o a ' d b a -
ngz(g) = BEX2(O) -y —yXz2(0) (o)
O‘::'rl O‘:t O;,:rpl ‘
TA:TJ_
Thus, the Optimum Control law derived in Appendix ¢ for 1 '
e 4 “% [(T+QPQ)GﬁwaH]X?(t) —a %y
a A am ¢ -
ug(t) = = [(y) . - + X (8)], (69)
a o G+ (yrw O)H
where

a® = n(a?)2

b a2
1 -

a® = (Ay)

1+aa

e

Ay for small valuesof o

_ 2+ 0’14’ ] tan b @’(Ts - Ty)
wb[1+ab} + X\ tan h wb(Tg - Ty)

G = (Ay) sin h (T, - t) - 0 [1+e?] cos h 0 (Ty-t).

H = (Ay) cos h (T, - t) - o [1+a?] sin h o®(Ti-t).

For the homogeneous C-US3° (Hydrogen as coolant) rcactor with

the atom ratioc about 500, using A=0.1 seo"l, Bﬁ7.5xlo_3, vER .5,

. 2, v=0.23 sec™t (equivalent to 69 cents

N 4

_ 2 .
.5x10" cm~ we can approximate

2520.09 cm”

reactivity), Ts - Ti2> 60 sec, and 7

~
, TR—325 cm

the followins quantities as

" Bz _ 5 -
2= et T57 x 107 et A0 = vz, T1.875 x 1077 on



.

a® ¥ 0.01, a° ¢ 0.1, wp A4 A, @ Ay ¥ y+wb and tan h wb(Tg—Tl) Y.
Substituting some approximate quantities glven above into Equation
(63), we have

a~ At wb(l+ab
d)b (1+ab ) +

=1,

IR > t—

0%6 + (y+0®0)H ¥ 0?(GHE) Y- (niy)ale (MY (T2-t)

(v+o’0) 1 + 020 2 0? (G+H) Y- (e Jale (MY (Ta-t)
and
a a
uf(e) ¥ B B (o) ¢+ Ay o Ony)(Ta-t) (66)
a a” (A +y)
(10) The Response of the Flux and Precursor Having Optimum
Control
The optimum flux, ¢,, subjected to initial errors can be
obtained by solving the following differential equations which
are derived from Equations (66), (61), (25) and (45),
_d_Xil 4+ M X? = - __23/__ e_(xﬂ)(Tl't). £ < Ty (67)
dt™+* a * a N
a + 2 o +2
b 2A b
%-Exl*+ Xl 0. Ta KT (68)
a +2
b~
For the case a” = 0.1, and a~ = 0.01,
i.e. a®+ 2% 2 o+ 22,
the solution of Equations (67) and (68) are,
X3, = X3 e e_(-)\”)t - "wa e'(M“Y)Tl sin h (My)t, t{ T. (69)
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b b ~A(t-T
Xl*g Xy o€ ( 1)' Ty ST To  (70)
where
Xio = the value of X? at t = Q,

XSy = the value of X5 at t = T,.

By using the definition of X7 and XE in equation (24) and (20)
one obtains

a - -
AT (z,t) = { I A L. o%e Ovby ) Tatye sin h (%+7)t} sin-%z.

£ {Ta (71)

A¢b(z,t) =4 { A68 e'x(t_Tl)} oY1 sin-%z, T, <t (T, (72)
where
e 0% = ¢2 - 68 from equation (18),
b T a by, 4T a | n 05 = o8 T
NAdse’ 1 = (65 = ¢5) e’ - Ao = 20 5 °0 Y1
t=T1 ¢
(see Figure 1) (73)
Then
by = Op + NG,
3% ={¢%e7t + o2t
o (02 - o2y (MYITAMYE 50 1 ()t } sin Tr £ 4Ty (7h)
a b . T
o0 g{wo = 00 YTagh(6-Ty) | 4b YTa } sin 7 7. Tig6d T2 (75)
When t = T3, it is known that 02e M1 & o ang ¢il A ¢2 ‘
=T, £=T, *

Therefore the derivatives of ¢i at t = T; i1s discontinuous.
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Substituting Equation (74) and (75) into Equation (7), the

Optimum precursor are obtained:

c2 = { c2e" + [(y)t+1le M acd + z o~ (MY Tapg -2E

/8

- QIE sin h (x+v)t]} sin 7z t$T (76)
7\W ! 'Z‘: i)

a

cE,g'cil e_x(t'Tl) + 022 +_Q%1 e¥T1g e'x(t_Tl)
t=T1

T, t { T2 (77)

It can be proved that at ¢t = T; both C, and %EC* are continuous.
The response of ¢, and Cy, are calculated for the typical
nuclear powered rocket start-up, i.e. ¥ & 0.23 sec_l AY 0.1 sec”
by using equations (72), (73), (74) and (75) with initial errors
of 100% and -50%. The reference initial power 1s 10KW and final

6

power is 10 KW. The rate of rise of power is one decade per ten

seconds, corresponding to 69 cents of reactivity. Two curves for

by C
-3 and Z vs time are plotted in fingure 1 and 2, respectively.
¢0 CO

The actual response shown in figure 1 1s very close to the desired

response even subjected to an initial error as high as 100%.

2



(11) Conclusion

Attempts are made to control the absorption cross-sectlion
of the nuclear rocket with distributed parameter kinetics. Two
optimization procedure are taken; one with bang-bang control for
the reference flux and precursor, another to eliminate the jump
by maximum principle. Closed form solutions for the control
laws are obtalned.
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APPENDIX A

Maximum Principle for a System of Algebraic and Differential Equations

The system is described by the following set of algebraic

and differential equations:

0= f, (Xa « X X o - Ko Kpggs Ua o s Wy - ur) i=1,. . m,
(A1)
ax. (o)
—-—————éo SN NN SN SR S N T u..)
{=m+1, . . n+tl (A2)
Xi(o=t) = Xi(t) { =1, . «m mtl, . . . n+tl (A3)

where Xi(O) are state variables and w, are control variables.

The problem is to minimize

n+1
$(T2) = ¥ ¢;%X; (0=T2)
i=1
T, n+1 . n+l I
- ft s C,Xdo+ ¥ 0% (o=t) (ak)
i:l i’—‘l

The method of calculus of variation may be applied to derive the
maximum principle for the case of unbounded control variables for
fixed time. The quantity S(Ts) in Equation (Al) remains the same
by introducing Lagrange multipliers pi(o) to adjoin the contraints
imposed by equations (Al) and (A2)

n+l . n+l

s(T2) = fr2 121 ¢,k do + .Zl ¢, %, (o=t)

T m n+1 R
+ [ 2{.2 p,(0-f,) + X pi(xi—fi)}do (A5)

i=m+1




First order varilatlon are taken for the state and control
variables about a stationary path as

Xy 'Xi + e&i(t)

it

X; =X, + eﬁi(t)

Uy 'E sC (t) (A6)

Stationary values of S(T2) in Equation (A5) are determined
by taking the partial derative of S(Tg) with respect to € and

gsetting result to zero.

33 T, n+1 . n+1 . n+1 Bfi
% =/ { 2 Cif v X by - by 3%, €y

t i=1 i=m+1 i=1
J=1
T n+1 r Bfi
- ft { y 5 Py Tm, &k}do = 0 (A7)
i=1 k=1

The first two tems of the right-hand side of the above equ-

ation may be integrated by parts to obtain the following

g& Ts n+1 ( ) e Ts
C.& + 3 C., + p. .l
=1 TR0y =T R R
T2 f n+1 . n+1 a}
= [ s p, + T ;;41 E. d

e LiSm 1 1=1 X it
_J=1
of.
i

T n+1 r
+ ft2 P Z pig—lz
i=1 k=

Ex do (a8)

Since Equation (A8) must be satisfied for arbitrary &i and Ck
the coefficients of these terms must be zero, i.e.

Ci =0 1i=1, . . . . m

Ci = -pi(Tg) i=mtl, . . . . ntl (A9)




n+1
0= - Z: pj
J=1 ‘
. n+l
P; = - p
1 j=1 J
zi 3,
1=1 Yy

=mtl, . . . . nt+l

If the Hamiltonian is defined as

H =
then
0 = OH
- T 9%,
1
i -
do 5Xi

n+l

Py i

i=1, m
I=m+1, . . . . n+l
k=1, r

(n10)

(A11)

(A12)

(A13)

(A14)

(A15)



Appendix B

Condition for the Derivative of Precursor to be Continuous at

t =T

By definition of equations (20), (24), and (17)

a a a
xi(o) _ Cq(o,z) _ ACa(o,z) 3 c=-Cq _ cd .
T vo avYyo_ . T YG 1
sin EZ C e sinzz Coe s1n—fz C e nzz
b b b (B-1)
Ci (o b -C
. T a_yly _ .. T Y1y a Yy . T
sinyz Coe' " tsingz C e sinzz Coe Elnzz
(B-2)
Thus
d La d.b d c?
Xz (o) - x=Xz(0)| o=t
90 0==T4 S0 t=T, do Cie'ycsirr%z o=T;
b d¢ a
0 C _ 3o vC
" do CaeTTlsinEz - yg T ) C e70s1n—z
o y) o=t c? o 51nzz t 0=Ty o) J/
.b t=T1
oC
30
a_yTs o=t (B-3)
Coe sinsz t-T,
For continuous slope of precursor at o = Ty i.e.
3¢ (o 3 3P (o
o 0=Ty o |o=t °
=T
one obtains .
d .a 3 b vc2(o,z)
X2(o) ] 30| -
3o 0=T4 30 = C eY081nZz 0=T4
=T,
Ca +AC . 5
Ve, | T TR (B-
J7 U=Tl O=T1

0=T4



Appendix C: Optimum Control Law

Optimum control law for the time interval £+ LT, can be derived

by solving equation (25) and (44). The solutions are similar to

that of interval T; t{ Tz except superscript b changed to a and

arbitrary constants F to E
a
a A a
i (o) = 2=, { -(my)p2 + 24, (c-1)

2a

pa(o) = By (t) cos h w?(o-t) + E2(t) sin h o’(o-t) (C-2)

X3 = §—§_E1(t) sin h w*(o-t) + E=2(t) cos h wa(o—t)} (c-3)

) & --—l— Eq,(t) [(K+7) cos h o?(o-t) - wa(1+aa) sin h wa(c—tﬂ

il

20
+ Ex(t) [(x+7) sin h o7 (o-t) - o?(1+a?) cos h o (o- t)]&

(c-4)

where

e
Il

& 7‘+'Y)‘$W:L = "'_- >

for small values of aa ’

U?

and the quantity t here is carried as a parameter.
Arbitrary constants can be determined by using the imposed
conditions in equations (63) and (64)

Substituting equation (58) into equations (63) and (64) one

obtains the following equations, regpectively:

(o) | = 2 [wR(m) - o°(14a®) Fa(ma)] (c-5)

U=T1 20,
o - P b b _
3%z (o) \0=T1WX§(G)\0=T1 tY=T% [ - o (1) FulTa) +7\F2(T1)] (c-6)

ILet t = Ty in equation (60), we have

Fy(Ty) = - Fa(Ta) tan h a® (Tz-Ty) (c-7)

S




Eliminating F,(T;) and F-(T,) among above three equations leads to

3 i
Sx3 (o) + (yeP)xB(o) | +w =0 (c-8)
0=Ty 0=T1

where
b b
A (1+a°) tan h o (T2-T4)

0= :
o (1+2") 4+ A tan h wb(Tg-Tl)

(¢c-9)

bstituting Equation (C-4) into Equation (C-8), we have
El(t)[waG + ('ymbO)Hl + Eg(t)[(ymbﬂ)c; + maH] - 2a®y=0 (c-10)

where

il

¢ = (Ay) sin h 0 (T1-t) - (1 + o®) cos h @*(Ty-t)
H = (Mvy) cos h o?(Ty-t) - 0?(1+a®) sin h o (T,- t)

Using the Equation (c3), the following equation 1s obtained
a
a w
Xi(t) = 7 Ea(t) (c-11)

Combining with equation (C-10) gives

—-g- [(rymbo)cr + waH] x3(t) - 2ay
w

Ey(t) = - (c-12)
o G + ('y+wbn) H
The optimum Controel law is obtained from equation (C—l)
a a A2 a
nglt) = ux(o) = — ~(My)EL (8) + 2X3(t)
2a
o=t
. -—% [37+ wa)G + maHJ X3 (t) - oy
= & {(xw) @ + x‘i(t)}t(‘rl
a

o?G + (y+ﬂ$?UH
(c-13)
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