research

Phase Diffusion in Single-Walled Carbon Nanotube Josephson Transistors

Abstract

We investigate electronic transport in Josephson junctions formed by single-walled carbon nanotubes coupled to superconducting electrodes. We observe enhanced zero-bias conductance (up to 10e^2/h) and pronounced sub-harmonic gap structures in differential conductance, which arise from the multiple Andreev reflections at superconductor/nanotube interfaces. The voltage-current characteristics of these junctions display abrupt switching from the supercurrent branch to resistive branch, with a gate-tunable switching current ranging from 50 pA to 2.3 nA. The finite resistance observed on the supercurrent branch and the magnitude of the switching current are in good agreement with calculation based on the model of classical phase diffusion

    Similar works