We investigate electronic transport in Josephson junctions formed by
single-walled carbon nanotubes coupled to superconducting electrodes. We
observe enhanced zero-bias conductance (up to 10e^2/h) and pronounced
sub-harmonic gap structures in differential conductance, which arise from the
multiple Andreev reflections at superconductor/nanotube interfaces. The
voltage-current characteristics of these junctions display abrupt switching
from the supercurrent branch to resistive branch, with a gate-tunable switching
current ranging from 50 pA to 2.3 nA. The finite resistance observed on the
supercurrent branch and the magnitude of the switching current are in good
agreement with calculation based on the model of classical phase diffusion