30,786 research outputs found

    Three-boson problem at low energy and Implications for dilute Bose-Einstein condensates

    Full text link
    It is shown that the effective interaction strength of three bosons at small collision energies can be extracted from their wave function at zero energy. An asymptotic expansion of this wave function at large interparticle distances is derived, from which is defined a quantity DD named three-body scattering hypervolume, which is an analog of the two-body scattering length. Given any finite-range interaction potentials, one can thus predict the effective three-body force from a numerical solution of the Schr\"{o}dinger equation. In this way the constant DD for hard-sphere bosons is computed, leading to the complete result for the ground state energy per particle of a dilute Bose-Einstein condensate (BEC) of hard spheres to order ρ2\rho^2, where ρ\rho is the number density. Effects of DD are also demonstrated in the three-body energy in a finite box of size LL, which is expanded to the order L7L^{-7}, and in the three-body scattering amplitude in vacuum. Another key prediction is that there is a violation of the effective field theory (EFT) in the condensate fraction in dilute BECs, caused by short-range physics. EFT predictions for the ground state energy and few-body scattering amplitudes, however, are corroborated.Comment: 24 pages, no figur

    Joint perception: gaze and beliefs about social context

    Get PDF
    The way that we look at images is influenced by social context. Previously we demonstrated this phenomenon of joint perception. If lone participants believed that an unseen other person was also looking at the images they saw, it shifted the balance of their gaze between negative and positive images. The direction of this shift depended upon whether participants thought that later they would be compared against the other person or would be collaborating with them. Here we examined whether the joint perception is caused by beliefs about shared experience (looking at the same images) or beliefs about joint action (being engaged in the same task with the images). We place our results in the context of the emerging field of joint action, and discuss their connection to notions of group emotion and situated cognition. Such findings reveal the persuasive and subtle effect of social context upon cognitive and perceptual processes

    Effects of rapid thermal annealing on device characteristics of InGaAs/GaAs quantum dot infrared photodetectors

    Get PDF
    In this work, rapid thermal annealing was performed on InGaAs/GaAs quantum dot infrared photodetectors (QDIPs) at different temperatures. The photoluminescence showed a blueshifted spectrum in comparison with the as-grown sample when the annealing temperature was higher than 700 °C, as a result of thermal interdiffusion of the quantum dots (QDs). Correspondingly, the spectral response from the annealed QDIP exhibited a redshift. At the higher annealing temperature of 800 °C, in addition to the largely redshifted photoresponse peak of 7.4 µm (compared with the 6.1 µm of the as-grown QDIP), a high energy peak at 5.6 µm (220 meV) was also observed, leading to a broad spectrum linewidth of 40%. This is due to the large interdiffusion effect which could greatly vary the composition of the QDs and thus increase the relative optical absorption intensity at higher energy. The other important detector characteristics such as dark current, peak responsivity, and detectivity were also measured. It was found that the overall device performance was not affected by low annealing temperature, however, for high annealing temperature, some degradation in device detectivity (but not responsivity) was observed. This is a consequence of increased dark current due to defect formation and increased ground state energy. © 2006 American Institute of Physic

    Shoulder recovery for head and neck cancer patients after unilateral neck dissection: a pilot exploratory study

    Get PDF
    An established side-effect of neck dissection (ND) for head and neck (HNC) tumour management includes shoulder dysfunction (SD), which can impact quality of life (QOL). Shoulder strength and range of movement (ROM) are key parameters to be monitored in SD. However, such evaluations are not routinely conducted in the clinical setting. The aim of this study was to evaluate objectively the impact of ND on shoulder functions. Methods: This is a pilot exploratory study in a tertiary cancer centre. Five participants with unilateral ND and advanced HNC, completed the study. Outcome measures consisted of self-reported QOL questionnaires, C2–T1 dermatomes and shoulder ROM and strength testing. Data was collected at baseline, 1.5-months after surgery and 6-months after diagnosis (after adjuvant treatment completion). Results: Most outcome measures on the surgically affected side were negatively impacted post-operatively, with varied recovery seen at follow-up. Sensory loss was noted at C3–4 dermatome levels. Shoulder ROM and strength was reduced on the surficial side for all participants, with some recovery after six months except for two participants. Conclusion: Results of SD after ND are diverse and unique to each patient. Findings from this pilot study indicate that regular rehabilitation/exercise may facilitate recovery of shoulder function post HNC surgery. However, customised rehabilitation may yield better outcomes. Future studies with a larger sample are indicated to validate the findings of this study

    Evolution of InAs branches in InAs/GaAs nanowire heterostructures

    Get PDF
    Branched nanowireheterostructures of InAs∕GaAs were observed during Au-assisted growth of InAs on GaAsnanowires. The evolution of these branches has been determined through detailed electron microscopy characterization with the following sequence: (1) in the initial stage of InAsgrowth, the Au droplet is observed to slide down the side of the GaAsnanowire, (2) the downward movement of Aunanoparticle later terminates when the nanoparticle encounters InAsgrowing radially on the GaAsnanowire sidewalls, and (3) with further supply of In and As vapor reactants, the Aunanoparticles assist the formation of InAs branches with a well-defined orientation relationship with GaAs∕InAs core/shell stems. We anticipate that these observations advance the understanding of the kink formation in axial nanowireheterostructures.The Australian Research Council is acknowledged for the financial support of this project. One of the authors M.P. acknowledges the support of an International Postgraduate Research Scholarship

    The effect of different baryons impurities

    Full text link
    We demonstrate the different effect of different baryons impurities on the static properties of nuclei within the framework of the relativistic mean-field model. Systematic calculations show that Λc+\Lambda_c^+ and Λb\Lambda_b has the same attracting role as Λ\Lambda hyperon does in lighter hypernuclei. Ξ\Xi^- and Ξc0\Xi_c^0 hyperon has the attracting role only for the protons distribution, and has a repulsive role for the neutrons distribution. On the contrary, Ξ0\Xi^0 and Ξc+\Xi^+_c hyperon attracts surrounding neutrons and reveals a repulsive force to the protons. We find that the different effect of different baryons impurities on the nuclear core is due to the different third component of their isospin.Comment: 9 page

    Electrical and Thermal Behavior of Copper-Epoxy Nanocomposites Prepared via Aqueous to Organic Phase Transfer Technique

    Get PDF
    The preparation, electrical, and thermal behaviors of copper-epoxy nanocomposites are described. Cetyltrimethylammonium bromide- (CTAB-) stabilized copper (Cu) particles were synthesized via phase transfer technique. Isopropanol (IPA), sodium borohydride (NaBH4), and toluene solution of diglycidyl ether of bisphenol A (DGEBA) were used as transferring, reducing agent, and the organic phase, respectively. The UV-Vis absorbance spectra of all the sols prepared indicate that the presence of Cu particles with the particles transfer efficiency is ≥97%. The amount, size, and size distribution of particles in the organosol were dependent on the content of organic solute in the organosol. The composites were obtained upon drying the organosols and these were then subjected to further studies on the curing, thermal, and electrical characteristic. The presence of Cu fillers does not significantly affect the completeness of the composite curing process and only slightly reduce the thermal stability of the composites that is >300◦C. The highest conductivity value of the composites obtained is 3.06 × 10−2 S cm−1

    Evidence for nodeless superconducting gap in NaFe1x_{1-x}Cox_xAs from low-temperature thermal conductivity measurements

    Full text link
    The thermal conductivity of optimally doped NaFe0.972_{0.972}Co0.028_{0.028}As (TcT_c \sim 20 K) and overdoped NaFe0.925_{0.925}Co0.075_{0.075}As (TcT_c \sim 11 K) single crystals were measured down to 50 mK. No residual linear term κ0/T\kappa_0/T is found in zero magnetic field for both compounds, which is an evidence for nodeless superconducting gap. Applying field up to HH = 9 T (Hc2/4\approx H_{c2}/4) does not noticeably increase κ0/T\kappa_0/T in NaFe1.972_{1.972}Co0.028_{0.028}As, which is consistent with multiple isotropic gaps with similar magnitudes. The κ0/T\kappa_0/T of overdoped NaFe1.925_{1.925}Co0.075_{0.075}As shows a relatively faster field dependence, indicating the increase of the ratio between the magnitudes of different gaps, or the enhancement of gap anisotropy upon increasing doping.Comment: 5 pages, 4 figure
    corecore