59 research outputs found

    Modeling movement disorders - CRPS-related dystonia explained by abnormal proprioceptive reflexes

    Get PDF
    AbstractHumans control their movements using adaptive proprioceptive feedback from muscle afferents. The interaction between proprioceptive reflexes and biomechanical properties of the limb is essential in understanding the etiology of movement disorders. A non-linear neuromuscular model of the wrist incorporating muscle dynamics and neural control was developed to test hypotheses on fixed dystonia. Dystonia entails sustained muscle contractions resulting in abnormal postures. Lack of inhibition is often hypothesized to result in hyperreflexia (exaggerated reflexes), which may cause fixed dystonia. In this study the model-simulated behavior in case of several abnormal reflex settings was compared to the clinical features of dystonia: abnormal posture, sustained muscle contraction, increased stiffness, diminished voluntary control and activity-aggravation.The simulation results were rated to criteria based on characteristic features of dystonia. Three abnormal reflex scenarios were tested: (1) increased reflex sensitivity—increased sensitivity of both the agonistic and antagonistic reflex pathways; (2) imbalanced reflex offset—a static offset to the reflex pathways on the agonistic side only; and (3) imbalanced reflex sensitivity—increased sensitivity of only the agonistic reflex pathways.Increased reflex sensitivity did not fully account for the features of dystonia, despite distinct motor dysfunction, since no abnormal postures occurred. Although imbalanced reflex offset did result in an abnormal posture, it could not satisfy other criteria. Nevertheless, imbalanced reflex sensitivity with unstable force feedback in one of the antagonists closely resembled all features of dystonia. The developed neuromuscular model is an effective tool to test hypotheses on the underlying pathophysiology of movement disorders

    Piezo1 Mechanosensitive Ion Channel Mediates Stretch-Induced Nppb Expression in Adult Rat Cardiac Fibroblasts

    Get PDF
    In response to stretch, cardiac tissue produces natriuretic peptides, which have been suggested to have beneficial effects in heart failure patients. In the present study, we explored the mechanism of stretch-induced brain natriuretic peptide (Nppb) expression in cardiac fibroblasts. Primary adult rat cardiac fibroblasts subjected to 4 h or 24 h of cyclic stretch (10% 1 Hz) showed a 6.6-fold or 3.2-fold (p 20-fold higher in cardiomyocytes than in cardiac fibroblasts, indicating that cardiac fibroblasts were not the main source of Nppb in the healthy heart. Yoda1, an agonist of the Piezo1 mechanosensitive ion channel, increased Nppb expression 2.1-fold (p < 0.05) and significantly induced other extracellular matrix (ECM) remodeling genes. Silencing of Piezo1 reduced the stretch-induced Nppb and Tgfb1 expression in cardiac fibroblasts. In conclusion, our study identifies Piezo1 as mediator of stretch-induced Nppb expression, as well as other remodeling genes, in cardiac fibroblasts

    Hydrogen energy. Opportunities for the development of infrastructure for hydrogen-powered transport in Russia

    Full text link
    Analysis of hydrogen energy in Russia and in the world is presented here. We’ve paid attention to energy-efficient cars, infrastructure problems and their feasible solutions.В работе проведён анализ состояния водородной энергетики в России и в мире. Уделено внимание энергоэффективному транспорту, проблемам инфраструктуры, возможным решениям

    Randomized Delayed-Start Trial of Levodopa in Parkinson's Disease

    Get PDF
    BACKGROUND Levodopa is the main treatment for symptoms of Parkinson's disease. Determining whether levodopa also has a disease-modifying effect could provide guidance as to when in the course of the disease the treatment with this drug should be initiated. METHODS In a multicenter, double-blind, placebo-controlled, delayed-start trial, we randomly assigned patients with early Parkinson's disease to receive levodopa (100 mg three times per day) in combination with carbidopa (25 mg three times per day) for 80 weeks (early-start group) or placebo for 40 weeks followed by levodopa in combination with carbidopa for 40 weeks (delayed-start group). The primary outcome was the between-group difference in the mean change from baseline to week 80 in the total score on the Unified Parkinson's Disease Rating Scale (UPDRS; scores range from 0 to 176, with higher scores signifying more severe disease). Secondary analyses included the progression of symptoms, as measured by the UPDRS score, between weeks 4 and 40 and the noninferiority of early initiation of treatment to delayed initiation between weeks 44 and 80, with a noninferiority margin of 0.055 points per week. RESULTS A total of 445 patients were randomly assigned: 222 to the early-start group and 223 to the delayed-start group. The mean (+/- SD) UPDRS score at baseline was 28.1 +/- 11.4 points in the early-start group and 29.3 +/- 12.1 points in the delayed-start group. The change in UPDRS score from baseline to week 80 was -1.0 +/- 13.1 points and -2.0 +/- 13.0 points, respectively (difference, 1.0 point; 95% confidence interval [CI], -1.5 to 3.5; P = 0.44); this finding of no significant between-group difference at week 80 implies that levodopa had no disease-modifying effect. Between weeks 4 and 40, the rate of progression of symptoms, as measured in UPDRS points per week, was 0.04 +/- 0.23 in the early-start group and 0.06 +/- 0.34 in the delayed-start group (difference, -0.02; 95% CI, -0.07 to 0.03). The corresponding rates between weeks 44 and 80 were 0.10 +/- 0.25 and 0.03 +/- 0.28 (difference, 0.07; two-sided 90% CI, 0.03 to 0.10); the difference in the rate of progression between weeks 44 and 80 did not meet the criterion for noninferiority of early receipt of levodopa to delayed receipt. The rates of dyskinesia and levodopa-related fluctuations in motor response did not differ significantly between the two groups. CONCLUSIONS Among patients with early Parkinson's disease who were evaluated over the course of 80 weeks, treatment with levodopa in combination with carbidopa had no disease-modifying effect

    Coagulation Factor Xa Induces Proinflammatory Responses in Cardiac Fibroblasts via Activation of Protease-Activated Receptor-1

    Get PDF
    Coagulation factor (F) Xa induces proinflammatory responses through activation of protease-activated receptors (PARs). However, the effect of FXa on cardiac fibroblasts (CFs) and the contribution of PARs in FXa-induced cellular signalling in CF has not been fully characterised. To answer these questions, human and rat CFs were incubated with FXa (or TRAP-14, PAR-1 agonist). Gene expression of pro-fibrotic and proinflammatory markers was determined by qRT-PCR after 4 and 24 h. Gene silencing of F2R (PAR-1) and F2RL1 (PAR-2) was achieved using siRNA. MCP-1 protein levels were measured by ELISA of FXa-conditioned media at 24 h. Cell proliferation was assessed after 24 h of incubation with FXa ± SCH79797 (PAR-1 antagonist). In rat CFs, FXa induced upregulation of Ccl2 (MCP-1; >30-fold at 4 h in atrial and ventricular CF) and Il6 (IL-6; ±7-fold at 4 h in ventricular CF). Increased MCP-1 protein levels were detected in FXa-conditioned media at 24 h. In human CF, FXa upregulated the gene expression of CCL2 (>3-fold) and IL6 (>4-fold) at 4 h. Silencing of F2R (PAR-1 gene), but not F2RL1 (PAR-2 gene), downregulated this effect. Selective activation of PAR-1 by TRAP-14 increased CCL2 and IL6 gene expression; this was prevented by F2R (PAR-1 gene) knockdown. Moreover, SCH79797 decreased FXa-induced proliferation after 24 h. In conclusion, our study shows that FXa induces overexpression of proinflammatory genes in human CFs via PAR-1, which was found to be the most abundant PARs isoform in this cell type

    Cartilage intermediate layer protein 1 (CILP1): a novel mediator of cardiac extracellular matrix remodelling

    Get PDF
    Heart failure is accompanied by extracellular matrix (ECM) remodelling, often leading to cardiac fibrosis. In the present study we explored the significance of cartilage intermediate layer protein 1 (CILP1) as a novel mediator of cardiac ECM remodelling. Whole genome transcriptional analysis of human cardiac tissue samples revealed a strong association of CILP1 with many structural (e.g. COL1A2 r2¿=¿0.83) and non-structural (e.g. TGFB3 r2¿=¿0.75) ECM proteins. Gene enrichment analysis further underscored the involvement of CILP1 in human cardiac ECM remodelling and TGFß signalling. Myocardial CILP1 protein levels were significantly elevated in human infarct tissue and in aortic valve stenosis patients. CILP1 mRNA levels markedly increased in mouse heart after myocardial infarction, transverse aortic constriction, and angiotensin II treatment. Cardiac fibroblasts were found to be the primary source of cardiac CILP1 expression. Recombinant CILP1 inhibited TGFß-induced ¿SMA gene and protein expression in cardiac fibroblasts. In addition, CILP1 overexpression in HEK293 cells strongly (5-fold p¿<¿0.05) inhibited TGFß signalling activity. In conclusion, our study identifies CILP1 as a new cardiac matricellular protein interfering with pro-fibrotic TGFß signalling, and as a novel sensitive marker for cardiac fibrosis

    Fixed Dystonia in Complex Regional Pain Syndrome: a Descriptive and Computational Modeling Approach

    Get PDF
    Background: Complex regional pain syndrome (CRPS) may occur after trauma, usually to one limb, and is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. Involvement of dysfunctional GABAergic interneurons has been suggested, however the mechanisms that underpin fixed dystonia are still unknown. We hypothesized that dystonia could be the result of aberrant proprioceptive reflex strengths of position, velocity or force feedback. Methods: We systematically characterized the pattern of dystonia in 85 CRPS-patients with dystonia according to the posture held at each joint of the affected limb. We compared the patterns with a neuromuscular computer model simulating aberrations of proprioceptive reflexes. The computer model consists of an antagonistic muscle pair with explicit contributions of the musculotendinous system and reflex pathways originating from muscle spindles and Golgi tendon organs, with time delays reflective of neural latencies. Three scenarios were simulated with the model: (i) increased reflex sensitivity (increased sensitivity of the agonistic and antagonistic reflex loops); (ii) imbalanced reflex sensitivity (increased sensitivity of the agonistic reflex loop); (iii) imbalanced reflex offset (an offset to the reflex output of the agonistic proprioceptors). Results: For the arm, fixed postures were present in 123 arms of 77 patients. The dominant pattern involved flexion of the fingers (116/123), the wrists (41/123) and elbows (38/123). For the leg, fixed postures were present in 114 legs of 77 patients. The dominant pattern was plantar flexion of the toes (55/114 legs), plantar flexion and inversion of the ankle (73/114) and flexion of the knee (55/114). Only the computer simulations of imbalanced reflex sensitivity to muscle force from Golgi tendon organs caused patterns that closely resembled the observed patient characteristics. In parallel experiments using robot manipulators we have shown that patients with dystonia were less able to adapt their force feedback strength. Conclusions: Findings derived from a neuromuscular model suggest that aberrant force feedback regulation from Golgi tendon organs involving an inhibitory interneuron may underpin the typical fixed flexion postures in CRPS patients with dystonia.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Highlighting the Role of Biomarkers of Inflammation in the Diagnosis and Management of Complex Regional Pain Syndrome

    Get PDF
    Complex regional pain syndrome (CRPS) is characterized by continuous pain that is often accompanied by sensory, motor, vasomotor, sudomotor, and trophic disturbances. If left untreated, it can have a significant impact on the quality of life of patients. The diagnosis of CRPS is currently based on a set of relatively subjective clinical criteria: the New International Association for the Study of Pain clinical diagnostic criteria for CRPS. There are still no objective laboratory tests to diagnose CRPS and there is a great need for simple, objective, and easily measurable biomarkers in the diagnosis and management of this disease. In this review, we discuss the role of inflammation in the multi-mechanism pathophysiology of CRPS and highlight the application of potential biomarkers of inflammation in the diagnosis and management of this disease

    Neuroinflammation, Neuroautoimmunity, and the Co-Morbidities of Complex Regional Pain Syndrome

    Full text link
    corecore