187 research outputs found

    Suffix conjugates for a class of morphic subshifts

    Full text link
    Let A be a finite alphabet and f: A^* --> A^* be a morphism with an iterative fixed point f^\omega(\alpha), where \alpha{} is in A. Consider the subshift (X, T), where X is the shift orbit closure of f^\omega(\alpha) and T: X --> X is the shift map. Let S be a finite alphabet that is in bijective correspondence via a mapping c with the set of nonempty suffixes of the images f(a) for a in A. Let calS be a subset S^N be the set of infinite words s = (s_n)_{n\geq 0} such that \pi(s):= c(s_0)f(c(s_1)) f^2(c(s_2))... is in X. We show that if f is primitive and f(A) is a suffix code, then there exists a mapping H: calS --> calS such that (calS, H) is a topological dynamical system and \pi: (calS, H) --> (X, T) is a conjugacy; we call (calS, H) the suffix conjugate of (X, T). In the special case when f is the Fibonacci or the Thue-Morse morphism, we show that the subshift (calS, T) is sofic, that is, the language of calS is regular

    Slow and fast micro-field components in warm and dense hydrogen plasmas

    Full text link
    The aim of this work is the investigation of the statistical properties of local electric fields in an ion-electron two component plasmas for coupled conditions. The stochastic fields at a charged or at a neutral point in plasmas involve both slow and fast fluctuation characteristics. The statistical study of these local fields based on a direct time average is done for the first time. For warm and dense plasma conditions, typically Ne≈1018cm−3N_{e}\approx 10^{18}cm^{-3}, % T_{e}\approx 1eV, well controlled molecular dynamics (MD) simulations of neutral hydrogen, protons and electrons have been carried out. Relying on these \textit{ab initio} MD calculations this work focuses on an analysis of the concepts of statistically independent slow and fast local field components, based on the consideration of a time averaged electric field. Large differences are found between the results of these MD simulations and corresponding standard results based on static screened fields. The effects discussed are of importance for physical phenomena connected with stochastic electric field fluctuations, e.g., for spectral line broadening in dense plasmas.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Periodic points in random substitution subshifts

    Get PDF
    We study various aspects of periodic points for random substitution subshifts. In order to do so, we introduce a new property for random substitutions called the disjoint images condition. We provide a procedure for determining the property for compatible random substitutions—random substitutions for which a well-defined abelianisation exists. We find some simple necessary criteria for primitive, compatible random substitutions to admit periodic points in their subshifts. In the case that the random substitution further has disjoint images and is of constant length, we provide a stronger criterion. A method is outlined for enumerating periodic points of any specified length in a random substitution subshift

    Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Get PDF
    Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 Όm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics

    Power management by load forecasting in web server clusters

    No full text
    The complexity and requirements of web applications are increasing in order to meet more sophisticated business models (web services and cloud computing, for instance). For this reason, characteristics such as performance, scalability and security are addressed in web server cluster design. Due to the rising energy costs and also to environmental concerns, energy consumption in this type of system has become a main issue. This paper shows energy consumption reduction techniques that use a load forecasting method, combined with DVFS (Dynamic Voltage and Frequency Scaling) and dynamic configuration techniques (turning servers on and off), in a soft real-time web server clustered environment. Our system promotes energy consumption reduction while maintaining user's satisfaction with respect to request deadlines being met. The results obtained show that prediction capabilities increase the QoS (Quality of Service) of the system, while maintaining or improving the energy savings over state-of-the-art power management mechanisms. To validate this predictive policy, a web application running a real workload profile was deployed in an Apache server cluster testbed running Linux. © 2011 Springer Science+Business Media, LLC

    Préface

    No full text
    • 

    corecore