266 research outputs found

    Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model

    Get PDF
    International audienceIn order to improve the representation of ozone absorption in the stratosphere of the MAECHAM5 general circulation model, the spectral resolution of the shortwave radiation parameterization used in the model has been increased from 4 to 6 bands. Two 20-years simulations with the general circulation model have been performed, one with the standard and the other with the newly introduced parameterization respectively, to evaluate the temperature and dynamical changes arising from the two different representations of the shortwave radiative transfer. In the simulation with the increased spectral resolution in the radiation parameterization, a significant warming of almost the entire model domain is reported. At the summer stratopause the temperature increase is about 6 K and alleviates the cold bias present in the model when the standard radiation scheme is used. These general circulation model results are consistent both with previous validation of the radiation scheme and with the offline clear-sky comparison performed in the current work with a discrete ordinate 4 stream scattering line by line radiative transfer model. The offline validation shows a substantial reduction of the daily averaged shortwave heating rate bias (1?2 K/day cooling) that occurs for the standard radiation parameterization in the upper stratosphere, present under a range of atmospheric conditions. Therefore, the 6 band shortwave radiation parameterization is considered to be better suited for the representation of the ozone absorption in the stratosphere than the 4 band parameterization. Concerning the dynamical response in the general circulation model, it is found that the reported warming at the summer stratopause induces stronger zonal mean zonal winds in the middle atmosphere. These stronger zonal mean zonal winds thereafter appear to produce a dynamical feedback that results in a dynamical warming (cooling) of the polar winter (summer) mesosphere, caused by an increased downward (upward) circulation in the winter (summer) hemisphere. In addition, the comparison of the two simulations performed with the general circulation model shows that the increase in the spectral resolution of the shortwave radiation and the associated changes in the cloud optical properties result in a warming (0.5?1 K) and moistening (3%?12%) of the upper tropical troposphere. By comparing these modeled differences with previous works, it appears that the reported changes in the solar radiation scheme contribute to improve the model mean temperature also in the troposphere

    The increased prevalence of Vibrio species and the first reporting of Vibrio jasicida and Vibrio rotiferianus at UK shellfish sites

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordWarming sea-surface temperature has led to an increase in the prevalence of Vibrio species in marine environments. This can be observed particularly in temperate regions where conditions for their growth has become more favourable. The increased prevalence of pathogenic Vibrio species has resulted in a worldwide surge of Vibriosis infections in human and aquatic animals. This study uses sea-surface temperature data around the English and Welsh coastlines to identify locations where conditions for the presence and growth of Vibrio species is favourable. Shellfish samples collected from three locations that were experiencing an increase in sea-surface temperature were found to be positive for the presence of Vibrio species. We identified important aquaculture pathogens Vibrio rotiferianus and Vibrio jasicida from these sites that have not been reported in UK waters. We also isolated human pathogenic Vibrio species including V. parahaemolyticus from these sites. This paper reports the first isolation of V. rotiferianus and V. jasicida from UK shellfish and highlights a growing diversity of Vibrio species inhabiting British waters.Biotechnology & Biological Sciences Research Council (BBSRC

    Interaction of Clostridium perfringens epsilon toxin with the plasma membrane: The role of amino acids Y42, Y43 and H162

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record. Data Availability Statement: The data presented in this study are available on request from the corresponding authors.Clostridium perfringens epsilon toxin (Etx) is a pore forming toxin that causes enterotoxaemia in ruminants and may be a cause of multiple sclerosis in humans. To date, most in vitro studies of Etx have used the Madin-Darby canine kidney (MDCK) cell line. However, studies using Chinese hamster ovary (CHO) cells engineered to express the putative Etx receptor, myelin and lymphocyte protein (MAL), suggest that amino acids important for Etx activity differ between species. In this study, we investigated the role of amino acids Y42, Y43 and H162, previously identified as important in Etx activity towards MDCK cells, in Etx activity towards CHO-human MAL (CHO-hMAL) cells, human red blood cells (hRBCs) and synthetic bilayers using site-directed mutants of Etx. We show that in CHO-hMAL cells Y42 is critical for Etx binding and not Y43 as in MDCK cells, indicating that surface exposed tyrosine residues in the receptor binding domain of Etx impact efficiency of cell binding to MAL-expressing cells in a species-specific manner. We also show that Etx mutant H162A was unable to lyse CHO-hMAL cells, lysed hRBCs, whilst it was able to form pores in synthetic bilayers, providing evidence of the complexity of Etx pore formation in different lipid environments.Engineering and Physical Sciences Research Council (EPSRC)Academy of Medical Sciences, Springboard AwardEngineering and Physical Sciences Research Counci

    Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries

    No full text
    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate

    A Pan-African Convection-Permitting Regional Climate Simulation with the Met Office Unified Model: CP4-Africa

    Get PDF
    This is the final version. Available on open access from the American Meteorological Society via the DOI in this recordA convection-permitting multiyear regional climate simulation using the Met Office Unified Model has been run for the first time on an Africa-wide domain. The model has been run as part of the Future Climate for Africa (FCFA) Improving Model Processes for African Climate (IMPALA) project, and its configuration, domain, and forcing data are described here in detail. The model [Pan-African Convection-Permitting Regional Climate Simulation with the Met Office UM (CP4-Africa)] uses a 4.5-km horizontal grid spacing at the equator and is run without a convection parameterization, nested within a global atmospheric model driven by observations at the sea surface, which does include a convection scheme. An additional regional simulation, with identical resolution and physical parameterizations to the global model, but with the domain, land surface, and aerosol climatologies of CP4-Africa, has been run to aid in the understanding of the differences between the CP4-Africa and global model, in particular to isolate the impact of the convection parameterization and resolution. The effect of enforcing moisture conservation in CP4-Africa is described and its impact on reducing extreme precipitation values is assessed. Preliminary results from the first five years of the CP4-Africa simulation show substantial improvements in JJA average rainfall compared to the parameterized convection models, with most notably a reduction in the persistent dry bias in West Africa, giving an indication of the benefits to be gained from running a convection-permitting simulation over the whole African continent.Natural Environment Research Council (NERC

    Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models

    Get PDF
    A warm bias in tropical tropopause temperature is found in the Met Office Unified Model (MetUM), in common with most models from phase 5 of CMIP (CMIP5). Key dynamical, microphysical, and radiative processes influencing the tropical tropopause temperature and lower-stratospheric water vapor concentrations in climate models are investigated using the MetUM. A series of sensitivity experiments are run to separate the effects of vertical advection, ice optical and microphysical properties, convection, cirrus clouds, and atmospheric composition on simulated tropopause temperature and lower-stratospheric water vapor concentrations in the tropics. The numerical accuracy of the vertical advection, determined in the MetUM by the choice of interpolation and conservation schemes used, is found to be particularly important. Microphysical and radiative processes are found to influence stratospheric water vapor both through modifying the tropical tropopause temperature and through modifying upper-tropospheric water vapor concentrations, allowing more water vapor to be advected into the stratosphere. The representation of any of the processes discussed can act to significantly reduce biases in tropical tropopause temperature and stratospheric water vapor in a physical way, thereby improving climate simulations
    • …
    corecore