6,093 research outputs found
Frustrated phase separation in two-dimensional charged systems
We study phase separation frustrated by the long-range Coulomb interaction in
two dimensional electronic systems with emphasys in the case of a metallic and
an insulating phase. We find that two-dimensional systems are more prone to
mesoscopic frustrated phase separation than the three dimensional ones.Comment: 15 pages, 11 figure
Anachronistic Grain Growth and Global Structure of the Protoplanetary Disk Associated with the Mature Classical T Tauri Star, PDS 66
We present ATCA interferometric observations of the old (13 Myr), nearby
(86pc) classical T Tauri star, PDS 66. Unresolved 3 and 12 mm continuum
emission is detected towards PDS 66, and upper limits are derived for the 3 and
6 cm flux densities. The mm-wave data show a spectral slope flatter than that
expected for ISM-sized dust particles, which is evidence of grain growth. We
also present HST/NICMOS 1.1 micron PSF-subtracted coronagraphic imaging of PDS
66. The HST observations reveal a bilaterally symmetric circumstellar region of
dust scattering about 0.32% of the central starlight, declining radially in
surface brightness. The light-scattering disk of material is inclined 32
degrees from face-on, and extends to a radius of 170 AU. These data are
combined with published optical and longer wavelength observations to make
qualitative comparisons between the median Taurus and PDS 66 spectral energy
distributions (SEDs). By comparing the near-infrared emission to a simple
model, we determine that the location of the inner disk radius is consistent
with the dust sublimation radius (1400 K at 0.1 AU). We place constraints on
the total disk mass using a flat-disk model and find that it is probably too
low to form gas giant planets according to current models. Despite the fact
that PDS 66 is much older than a typical classical T Tauri star (< 5 Myr), its
physical properties are not much different.Comment: 31 pages, 7 figure
Picosecond timing of Microwave Cherenkov Impulses from High-Energy Particle Showers Using Dielectric-loaded Waveguides
We report on the first measurements of coherent microwave impulses from
high-energy particle-induced electromagnetic showers generated via the Askaryan
effect in a dielectric-loaded waveguide. Bunches of 12.16 GeV electrons with
total bunch energy of GeV were pre-showered in tungsten, and
then measured with WR-51 rectangular (12.6 mm by 6.3 mm) waveguide elements
loaded with solid alumina () bars. In the 5-8 GHz
single-mode band determined by the presence of the dielectric in the waveguide,
we observed band-limited microwave impulses with amplitude proportional to
bunch energy. Signals in different waveguide elements measuring the same shower
were used to estimate relative time differences with 2.3 picosecond precision.
These measurements establish a basis for using arrays of alumina-loaded
waveguide elements, with exceptional radiation hardness, as very high precision
timing planes for high-energy physics detectors.Comment: 16 pages, 15 figure
Development Toward a Ground-Based Interferometric Phased Array for Radio Detection of High Energy Neutrinos
The in-ice radio interferometric phased array technique for detection of high
energy neutrinos looks for Askaryan emission from neutrinos interacting in
large volumes of glacial ice, and is being developed as a way to achieve a low
energy threshold and a large effective volume at high energies. The technique
is based on coherently summing the impulsive Askaryan signal from multiple
antennas, which increases the signal-to-noise ratio for weak signals. We report
here on measurements and a simulation of thermal noise correlations between
nearby antennas, beamforming of impulsive signals, and a measurement of the
expected improvement in trigger efficiency through the phased array technique.
We also discuss the noise environment observed with an analog phased array at
Summit Station, Greenland, a possible site for an interferometric phased array
for radio detection of high energy neutrinos.Comment: 13 Pages, 14 Figure
Recommended from our members
Functional variants of DOG1 control seed chilling responses and variation in seasonal life-history strategies in Arabidopsis thaliana.
The seasonal timing of seed germination determines a plant's realized environmental niche, and is important for adaptation to climate. The timing of seasonal germination depends on patterns of seed dormancy release or induction by cold and interacts with flowering-time variation to construct different seasonal life histories. To characterize the genetic basis and climatic associations of natural variation in seed chilling responses and associated life-history syndromes, we selected 559 fully sequenced accessions of the model annual species Arabidopsis thaliana from across a wide climate range and scored each for seed germination across a range of 13 cold stratification treatments, as well as the timing of flowering and senescence. Germination strategies varied continuously along 2 major axes: 1) Overall germination fraction and 2) induction vs. release of dormancy by cold. Natural variation in seed responses to chilling was correlated with flowering time and senescence to create a range of seasonal life-history syndromes. Genome-wide association identified several loci associated with natural variation in seed chilling responses, including a known functional polymorphism in the self-binding domain of the candidate gene DOG1. A phylogeny of DOG1 haplotypes revealed ancient divergence of these functional variants associated with periods of Pleistocene climate change, and Gradient Forest analysis showed that allele turnover of candidate SNPs was significantly associated with climate gradients. These results provide evidence that A. thaliana's germination niche and correlated life-history syndromes are shaped by past climate cycles, as well as local adaptation to contemporary climate
Direct photons ~basis for characterizing heavy ion collisions~
After years of experimental and theoretical efforts, direct photons become a
strong and reliable tool to establish the basic characteristics of a hot and
dense matter produced in heavy ion collisions. The recent direct photon
measurements are reviewed and a future prospect is given.Comment: 8 pages, 8 figures, Invited plenary talk at Quark Matter 200
Contrasting the beam interaction characteristics of selected lasers with a partially stabilised zirconia (PSZ) bio-ceramic
Differences in the beam interaction characteristics of a CO2 laser, a Nd:YAG laser, a high power diode laser (HPDL) and an excimer laser with a partially stabilised zirconia (PSZ) bio-ceramic have been studied. A derivative of Beer-Lambert’s law was applied and the laser beam absorption lengths of the four lasers were calculated as 33.55 x 10-3 cm for the CO2 laser, 18.22 x 10-3 cm for the Nd:YAG laser, 17.17 x 10-3 cm for the HPDL and 8.41 x 10-6 cm for the excimer laser. It was determined graphically that the fluence threshold values at which significant material removal was effected by the CO2 laser, the Nd:YAG laser, the HPDL and the excimer laser were 52 J/cm2, 97 J/cm2, 115 J/cm2 and 0.48 J/cm2 respectively. The thermal loading value for the CO2 laser, the Nd:YAG laser, the HPDL and the excimer laser were calculated as being 1.55 kJ/cm3, 5.32 kJ/cm3, 6.69 kJ/cm3 and 57.04 kJ/cm3 respectively
Proton Spin Relaxation Induced by Quantum Tunneling in Fe8 Molecular Nanomagnet
The spin-lattice relaxation rate and NMR spectra of H in
single crystal molecular magnets of Fe8 have been measured down to 15 mK. The
relaxation rate shows a strong temperature dependence down to 400
mK. The relaxation is well explained in terms of the thermal transition of the
iron state between the discreet energy levels of the total spin S=10. The
relaxation time becomes temperature independent below 300 mK and is
longer than 100 s. In this temperature region stepwise recovery of the
H-NMR signal after saturation was observed depending on the return field of
the sweep field. This phenomenon is attributed to resonant quantum tunneling at
the fields where levels cross and is discussed in terms of the Landau-Zener
transition.Comment: 13 pages, 5 figure
- …
