231 research outputs found
Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa, which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic tolerance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro. We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa. Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations.
IMPORTANCE: Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro, is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development
Conservation genetics of the pond bat (Myotis dasycneme) with special focus on the populations in northwestern Germany and in Jutland, Denmark
Conservation genetics is important in the management of endangered species, helping to understand their connectivity and longâterm viability, thus identifying populations of importance for conservation. The pond bat (Myotis dasycneme) is a rare species classified as âNear Threatenedâ with a wide but patchy Palearctic distribution. A total of 277 samples representing populations in Denmark, Germany, Latvia, Hungary, and Russia were used in the genetic analyses; 224 samples representing Denmark, Germany, and Russia were analyzed at 10 microsatellite loci; 241 samples representing all areas were analyzed using mitochondrial Dâloop and cytochrome B sequences. A Bayesian clustering approach revealed two poorly resolved clusters, one representing the Danish and German groups and the other the Russian group. However, significantly different pairwise FST and DEST estimates were observed between the Danish and German groups and between the Danish and Russian groups suggesting a recent population structure. These conflicting results might be attributed to the effect of migration or low resolution due to the number of microsatellite markers used. After concatenating the two mitochondrial sequences, analysis detected significant genetic differentiation between all populations, probably due to genetic drift combined with a founder event. The phylogenetic tree suggested a closer relationship between the Russian and Northern European populations compared to the Hungarian population, implying that the latter belongs to an older ancestral population. This was supported by the observed haplotype network and higher nucleotide diversity in this population. The genetic structuring observed in the Danish/German pond bat stresses the need for a crossâborder management between the two countries. Further, the pronounced mtDNA structuring, together with the indicated migration between nearby populations suggest philopatric female behavior but male migration, emphasizes the importance of protecting suitable habitat mosaics to maintain a continuum of patches with dense pond bat populations across the species' distribution range
Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study
Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ⤠70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015
Landscape science: a Russian geographical tradition
The Russian geographical tradition of landscape science (landshaftovedenie) is analyzed with particular reference to its initiator, Lev Semenovich Berg (1876-1950). The differences between prevailing Russian and Western concepts of landscape in geography are discussed, and their common origins in German geographical thought in the late nineteenth and early twentieth centuries are delineated. It is argued that the principal differences are accounted for by a number of factors, of which Russia's own distinctive tradition in environmental science deriving from the work of V. V. Dokuchaev (1846-1903), the activities of certain key individuals (such as Berg and C. O. Sauer), and the very different social and political circumstances in different parts of the world appear to be the most significant. At the same time it is noted that neither in Russia nor in the West have geographers succeeded in specifying an agreed and unproblematic understanding of landscape, or more broadly in promoting a common geographical conception of human-environment relationships. In light of such uncertainties, the latter part of the article argues for closer international links between the variant landscape traditions in geography as an important contribution to the quest for sustainability
Climate and colonialism
Recent years have seen a growth in scholarship on the intertwined histories of climate, science and European imperialism. Scholarship has focused both on how the material realities of climate shaped colonial enterprises, and on how ideas about climate informed imperial ideologies. Historians have shown how European expansion was justified by its protagonists with theories of racial superiority, which were often closely tied to ideas of climatic determinism. Meanwhile, the colonial spaces established by European powers offered novel âlaboratoriesâ where ideas about acclimatisation and climatic improvement could be tested on the ground. While historical scholarship has focused on how powerful ideas of climate informed imperial projects, emerging scholarship in environmental history, history of science and historical geography focuses instead on the material and cognitive practices by which the climates of colonial spaces were made known and dealt with in fields such as forestry, agriculture and human health. These heretofore rather disparate areas of historical research carry great contemporary relevance of studies of how climates and their changes have been understood, debated and adapted to in the past
Protease-anti-protease compartmentalization in SARS-CoV-2 ARDS: Therapeutic implications
Background Interleukin-6 (IL-6) is elevated in SARS-CoV-2 infection. IL-6 regulates acute-phase proteins, such as alpha-1 antitrypsin (AAT), a key lung anti-protease. We investigated the protease-anti-protease balance in the circulation and pulmonary compartments in SARS-CoV-2 acute respiratory distress syndrome (ARDS) compared to non-SARS-CoV-2 ARDS (nsARDS) and the effects of tocilizumab (IL-6 receptor antagonist) on anti-protease defence in SARS-CoV-2 infection. Methods Levels and activity of AAT and neutrophil elastase (NE) were measured in plasma, airway tissue and tracheal secretions (TA) of people with SARS-CoV-2 ARDS or nsARDS. AAT and IL-6 levels were evaluated in people with moderate SARS-CoV-2 infection who received standard of care +/- tocilizumab. Findings AAT plasma levels doubled in SARS-CoV-2 ARDS. In lung parenchyma AAT levels were increased, as was the percentage of neutrophils involved in NET formation. A protease-anti-protease imbalance was detected in TA with active NE and no active AAT. The airway anti-protease, secretory leukoprotease inhibitor was decreased in SARS-CoV-2-infected lungs and cleaved in TA. In nsARDS, plasma AAT levels were elevated but TA samples had less AAT cleavage, with no detectable active NE in most samples. Induction of AAT in ARDS occurred mainly through IL-6. Tocilizumab down-regulated AAT during SARS-CoV-2 infection. Interpretation There is a protease-anti-protease imbalance in the airways of SARS-CoV-2-ARDS patients. This imbalance is a target for anti-protease therapy. Funding NIH Serological Sciences Network, National Heart, Lung, and Blood Institute and National Institute of Diabetes and Digestive and Kidney Diseases
- âŚ