3 research outputs found

    Statistical description of the bubble cloud resulting from the injection of air into a turbulent water jet

    Get PDF
    The final bubble size distribution, resulting from the break-up of an air jet injected into the central axis of a fully developed, high Reynolds number turbulent water jet has been measured using a Phase Doppler Particle Analyzer (PDPA). The shape of the final size distribution is shown to depend not only on the dissipation rate of turbulent kinetic energy, ε, but also on the global void fraction, αH. It has been shown that such a dependence can be expressed as a function of two dimensionless numbers, namely the jet Weber number, Wen=ρUJ2DJ/σ, and the ratio between the initial bubble's size and the critical diameter, D0/Dc. The statistical properties of the time and distance separating two bubbles of the same diameter, after the turbulent break process is complete, have also been measured. The probability density function of the inter-arrival time between two consecutive bubbles was found to follow an exponential distribution with intensity factor, λ, depending on the number density of bubbles of a certain diameter and on the velocity of the flow

    Bubble size distribution resulting from the breakup of an air cavity injected into a turbulent water jet

    Get PDF
    We investigated experimentally the shape of the final size PDF(D) resulting from the breakup of an air bubble injected into the fully developed region of a high Reynolds number turbulent water jet. It is shown that the PDF(Dcirc) of the normalized bubble size Dcirc=D/D32, where D32 is the Sauter mean diameter of the distribution, has a universal single shape independent of the value of the turbulent kinetic energy of the water jet at the bubble injection point and of the air void fraction, α. The shape of the exponential tails characterizing each PDF(D) is shown to be only a function of the initial bubble size D0 and the critical bubble size Dc, defined as Dc=(1.46σ/ρ)3/5ɛ-2/5, where ɛ is the value of the dissipation rate of turbulent kinetic energy per unit mass at the air injection point

    A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow

    Full text link
    We consider the statistical description of the break-up of an immiscible fluid lump immersed into a fully developed turbulent flow. We focus on systems where there is no relative velocity between the continuous and dispersed phases. In this case, particle fragmentation is caused only by turbulent velocity fluctuations. The most relevant models proposed for the particle break-up frequency and for the shape of the daughter particle size distribution are reviewed. Their predictions are compared to recent experimental data, obtained for the break-up of an air cavity immersed into a high Reynolds number, turbulent water jet. Models based on purely kinematic arguments show the best agreement with the experimental data
    corecore