374 research outputs found
Reduction of thermal conductivity in ferroelectric SrTiO3 thin films
Bulk SrTiO3 is a quantum paraelectric in which an antiferrodistortive distortion below approximate to 105 K and quantum fluctuations at low temperature preclude the stabilization of a long-range ferroelectric state. However, biaxial mechanical stress, impurity doping, and Sr nonstoichiometry, among other mechanisms, are able to stabilize a ferroelectric or relaxor ferroelectric state at room temperature, which develops into a longer-range ferroelectric state below 250 K. In this paper, we show that epitaxial SrTiO3 thin films grown under tensile strain on DyScO3 exhibit a large reduction of thermal conductivity, approximate to 60% of at room temperature, with respect to identical strain-free or compressed films. The thermal conductivity shows a further reduction below 250 K, a temperature concurrent with the peak in the dielectric constant [J. H. Haeni et al., Nature (London) 430, 758 (2004)]. These results suggest that strain gradients in the relaxor and ferroelectric phase of SrTiO3 are very effective phonon scatterers, limiting the thermal transport in this material
Sleep hygiene impacts on episodic memories in young and older adults during quarantine by Covid-19: preliminary results
Sleep benefits off-line memory consolidation. Due to quarantine by Covid-19, sleep routines and sleep quality were affected. Preliminary results from our Lab showed that episodic memory formation is impaired by emotional variables, such as anxiety and depression. We hypothesize that sleep hygiene during quarantine positively impacts memory processes and emotional variables. To test this, we perform a 21-day study. Young and older participants were trained on the episodic memory task (video of neutral content). On day 7 they were tested and half of them began a sleep hygiene program. On day 14, participants were trained in a new episodic task and were tested on day 21. We found that young and older adults that received the sleep hygiene treatment had a positive impact on memory performance. Furthermore, older adults had better performance in memory recognition than young adults independently of the hygiene treatment. Moreover, older adults that received the sleep hygiene treatment showed a positive correlation between the total amount of sleep hygiene activities and the amount of correct recognition as well as a negative correlation with false recognition. We did not found a significant effect on emotional variables. These results demonstrate that sleep hygiene can be an effective tool for young and older adults to improve memory, however one-week treatment is not enough to induce emotional improvements.Fil: Tassone, Leonela Magali. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Moyano, Malen Daiana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Solferino, C.. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Feldberg, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Neurociencias Buenos Aires S. A.; ArgentinaFil: Tartaglini, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Neurociencias Buenos Aires S. A.; ArgentinaFil: Brusco, I.. Centro de Neuropsiquiatría y Neurología de la Conducta; ArgentinaFil: Forcato, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; ArgentinaXXXV Annual Meeting of the Argentinian Society for Neuroscience ResearchCiudad Autónoma de Buenos AiresArgentinaSociedad Argentina de Investigación en Neurociencia
Efficiency of Energy Conversion in Thermoelectric Nanojunctions
Using first-principles approaches, this study investigated the efficiency of
energy conversion in nanojunctions, described by the thermoelectric figure of
merit . We obtained the qualitative and quantitative descriptions for the
dependence of on temperatures and lengths. A characteristic temperature:
was observed. When , . When , tends to a saturation value. The dependence of
on the wire length for the metallic atomic chains is opposite to that for
the insulating molecules: for aluminum atomic (conducting) wires, the
saturation value of increases as the length increases; while for
alkanethiol (insulating) chains, the saturation value of decreases as the
length increases. can also be enhanced by choosing low-elasticity bridging
materials or creating poor thermal contacts in nanojunctions. The results of
this study may be of interest to research attempting to increase the efficiency
of energy conversion in nano thermoelectric devices.Comment: 2 figure
Effect of Thermoelectric Cooling in Nanoscale Junctions
We propose a thermoelectric cooling device based on an atomic-sized junction.
Using first-principles approaches, we investigate the working conditions and
the coefficient of performance (COP) of an atomic-scale electronic refrigerator
where the effects of phonon's thermal current and local heating are included.
It is observed that the functioning of the thermoelectric nano-refrigerator is
restricted to a narrow range of driving voltages. Compared with the bulk
thermoelectric system with the overwhelmingly irreversible Joule heating, the
4-Al atomic refrigerator has a higher efficiency than a bulk thermoelectric
refrigerator with the same due to suppressed local heating via the
quasi-ballistic electron transport and small driving voltages. Quantum nature
due to the size minimization offered by atomic-level control of properties
facilitates electron cooling beyond the expectation of the conventional
thermoelectric device theory.Comment: 8 figure
Excretion of Vancomycin-Resistant Enterococci by Wild Mammals
A survey of fecal samples found enterococcal excretion in 82% of 388 bank voles (Clethrionomys glareolus), 92% of 131 woodmice (Apodemus sylvaticus), and 75% of 165 badgers (Meles meles). Vancomycin-resistant enterococci, all Enterococcus faecium of vanA genotype, were excreted by 4.6% of the woodmice and 1.2% of the badgers, but by none of the bank voles
Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates
Whether the presence of adsorbates increases or decreases thermal conductivity in metal-organic frameworks (MOFs) has been an open question. Here we report observations of thermal transport in the metal-organic framework HKUST-1 in the presence of various liquid adsorbates: water, methanol, and ethanol. Experimental thermoreflectance measurements were performed on single crystals and thin films, and theoretical predictions were made using molecular dynamics simulations. We find that the thermal conductivity of HKUST-1 decreases by 40 – 80% depending on the adsorbate, a result that cannot be explained by effective medium approximations. Our findings demonstrate that adsorbates introduce additional phonon scattering in HKUST-1, which particularly shortens the lifetimes of low-frequency phonon modes. As a result, the system thermal conductivity is lowered to a greater extent than the increase expected by the creation of additional heat transfer channels. Finally, we show that thermal diffusivity is even more greatly reduced than thermal conductivity by adsorption
TARTESSUS: A customized electrospun drug delivery system loaded with Irinotecan for Local and sustained chemotherapy release in pancreatic cancer
Post-surgical chemotherapy in pancreatic cancer has notorious side effects due to the high dose required. Multiple devices have been designed to tackle this aspect and achieve a delayed drug release. This study aimed to explore the controlled and sustained local delivery of a reduced drug dose from an irinotecan-loaded electrospun nanofiber membrane (named TARTESSUS) that can be placed on the patients' tissue after tumor resection surgery. The drug delivery system formulation was made of polycaprolactone (PCL). The mechanical properties and the release kinetics of the drug were adjusted by the electrospinning parameters and by the polymer ratio between 10 w.t.% and 14 w.t.% of PCL in formic acid:acetic acid:chloroform (47.5:47.5:5). The irinotecan release analysis was performed and three different release periods were obtained, depending on the concentration of the polymer in the dissolution. The TARTESSUS device was tested in 2D and 3D cell cultures and it demonstrated a decrease in cell viability in 2D culture between 72 h and day 7 from the start of treatment. In 3D culture, a decrease in viability was seen between 72 h, day 7 (p < 0.001), day 10 (p < 0.001), 14 (p < 0.001), and day 17 (p = 0.003) as well as a decrease in proliferation between 72 h and day 10 (p = 0.030) and a reduction in spheroid size during days 10 (p = 0.001), 14 (p < 0.001), and 17 (p < 0.001). In conclusion, TARTESSUS showed a successful encapsulation of a chemotherapeutic drug and a sustained and delayed release with an adjustable releasing period to optimize the therapeutic effect in pancreatic cancer treatment
Recommended from our members
Methanol Steam Reformer on a Silicon Wafer
A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed
The Terrestrial Biosphere Model Farm
Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ-GUESS, ORCHIDEE, SiB-3, and SiB-CASA. All models were wrapped in a software framework driven with common forcing data, spin-up, and run protocols specified by the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901-2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open-source, cloud-based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges
- …