187 research outputs found

    Quantum States of Neutrons in Magnetic Thin Films

    Full text link
    We have studied experimentally and theoretically the interaction of polarized neutrons with magnetic thin films and magnetic multilayers. In particular, we have analyzed the behavior of the critical edges for total external reflection in both cases. For a single film we have observed experimentally and theoretically a simple behavior: the critical edges remain fixed and the intensity varies according to the angle between the polarization axis and the magnetization vector inside the film. For the multilayer case we find that the critical edges for spin up and spin down polarized neutrons move towards each other as a function of the angle between the magnetization vectors in adjacent ferromagnetic films. Although the results for multilayers and single thick layers appear to be different, in fact the same spinor method explains both results. An interpretation of the critical edges behavior for the multilyers as a superposition of ferromagnetic and antifferomagnetic states is given.Comment: 6 pages, 5 figure

    Magnetic Structure in Fe/Sm-Co Exchange Spring Bilayers with Intermixed Interfaces

    Full text link
    The depth profile of the intrinsic magnetic properties in an Fe/Sm-Co bilayer fabricated under nearly optimal spring-magnet conditions was determined by complementary studies of polarized neutron reflectometry and micromagnetic simulations. We found that at the Fe/Sm-Co interface the magnetic properties change gradually at the length scale of 8 nm. In this intermixed interfacial region, the saturation magnetization and magnetic anisotropy are lower and the exchange stiffness is higher than values estimated from the model based on a mixture of Fe and Sm-Co phases. Therefore, the intermixed interface yields superior exchange coupling between the Fe and Sm-Co layers, but at the cost of average magnetization.Comment: 16 pages, 6 figures and 1 tabl

    AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    No full text
    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å(-1). A detailed description of this flexible instrument and its performance characteristics in various operating modes are given.D. J. M. is supported through a NSF NIRT grant Contract No. 0304062

    Magnetic excitations in Dy/Y superlattices as seen via inelastic neutron scattering

    Get PDF
    Measurements of the spin excitations propagating normal to the interfaces in Dy/Y superlattices using neutron inelastic scattering are presented. For a given magnon momentum, a neutron-scattering spectrum shows multiple peaks at different energies, which indicates discrete energy spectra. The results are compared with theoretical calculations developed here to describe magnetic excitations in rare-earth superlattices. The theory accounts for Ruderman-Kittel-Kasuya-Yosida (RKKY) and Dzyaloshinsky-Moriya interactions in incommensurate helicoidal structures and achieves a quantitative agreement with the experimental data. This work demonstrates that neutron inelastic scattering can be used for systematic studies of the exchange interactions and spin dynamics in nanomagnetic systems over wide areas of the Brillouin zone

    Probing vertically graded anisotropy in FePtCu films

    Get PDF
    Field-dependent polarized neutron reflectivity (PNR) and magnetometry are employed to study the magnetic properties of compositionally uniform and graded FePtCu films as a function of annealing temperature (TA). The PNR results are able to directly probe the compositional and anisotropy variations through the film thickness. Further details about how the reversal mechanisms evolve are then elucidated by using a first-order reversal curve technique. The reversal of the graded sample annealed at 300º C occurs by an initial rapid switching of the dominant soft A1 phase toward the surface of the film, followed by the gradual reversal of the residual hard phase components toward the bottom. This indicates that the anisotropy gradient is not well established at this low TA. A fundamentally different mechanism is found after annealing at 400ºC, where the rapid switching of the entire film is preceded by a gradual reversal of the soft layers. This suggests that the anisotropy gradient has become better established through the film thickness. The field-dependent PNR measurements confirm the existence of an anisotropy gradient, where the lower (higher) anisotropy portions are now toward the bottom (top) of the film because of the Cu compositional gradient. However, after annealing at 500º C,a single rapid reversal is found, indicating the formation of a uniform hard film. In this case, PNR demonstrates a more uniform magnetic depth profile that is consistent with a uniform reference sample, suggesting significant interdiffusion of the Cu is degrading the compositional and induced anisotropy gradient at this elevated TA

    The High-Flux Backscattering Spectrometer at the NIST Center for Neutron Research

    Full text link
    We describe the design and current performance of the high-flux backscattering spectrometer located at the NIST Center for Neutron Research. The design incorporates several state-of-the-art neutron optical devices to achieve the highest flux on sample possible while maintaining an energy resolution of less than 1mueV. Foremost among these is a novel phase-space transformation chopper that significantly reduces the mismatch between the beam divergences of the primary and secondary parts of the instrument. This resolves a long-standing problem of backscattering spectrometers, and produces a relative gain in neutron flux of 4.2. A high-speed Doppler-driven monochromator system has been built that is capable of achieving energy transfers of up to +-50mueV, thereby extending the dynamic range of this type of spectrometer by more than a factor of two over that of other reactor-based backscattering instruments

    Polarized neutron reflectivity studies of magnetic semiconductor superlattices

    Get PDF
    Abstract Polarized neutron reflectivity studies of EuS/PbS, EuS/YbSe and GaMnAs/GaAs superlattices performed at the NIST Center for Neutron Research are presented. Pronounced antiferromagnetic (AFM) interlayer coupling has been found in EuS/PbS superlattices for a very broad range of PbS spacer thicknesses. Similar, but weaker, AFM coupling is also present in EuS/YbSe, although only for relatively thin YbSe layers. Neutron polarization analysis shows distinct in-plane asymmetry of the magnetization directions of EuS layers in both systems under investigation. For GaMnAs/GaAs superlattices, ferromagnetic (FM) interlayer correlations have been observed. Polarized neutron reflectometry investigations of several GaMnAs/GaAs superlattices have revealed that the manganese magnetic moments in individual GaMnAs layers, in spite of low Mn concentration, form a truly long range, that is in certain cases a single domain, ferromagnetic state.

    Asymmetric magnetization reversal in exchange-biased hysteresis loops

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.Polarized neutron reflectometry is used to probe the in-plane projection of the net-magnetization vector M of polycrystalline Fe films exchange coupled to twinned (110) MnF2 or FeF2 antiferromagnetic (AF) layers. The magnetization reversal mechanism depends upon the orientation of the cooling field with respect to the twinned microstructure of the AF, and whether the applied field is increased to (or decreased from) a positive saturating field; i.e., the magnetization reversal is asymmetric. The reversal of the sample magnetization from one saturated state to the other occurs via either domain wall motion or magnetization rotation on opposite sides of the same hysteresis loop

    Two-stage magnetization reversal in exchange biased bilayers

    Get PDF
    MnF2/Fe bilayers exhibit asymmetric magnetization reversal that occurs by coherent rotation on one side of the loop and by nucleation and propagation of domain walls on the other side of the loop. Here, we show by polarized neutron reflectometry, magnetization, and magnetotransport measurements that for samples with good crystalline "quality" the rotation is a two-stage process, due to coherent rotation to a stable state perpendicular to the cooling field direction. The result is remarkably asymmetrically shaped hysteresis loops
    corecore