6,414 research outputs found

    Superconductivity and Cobalt Oxidation State in Metastable Na(x)CoO(2-delta)*yH2O (x ~ 1/3; y ~ 4x)

    Full text link
    We report the synthesis and superconducting properties of a metastable form of the known superconductor NaxCoO2*yH2O (x ~ 1/3, y ~ 4x). Instead of using the conventional bromine-acetonitrile mixture for sodium deintercalation, we use an aqueous bromine solution. Using this method, we oxidize the sample to a point that the sodium cobaltate becomes unstable, leading to formation of other products if not controlled. This compound has the same structure as the reported superconductor, yet it exhibits a systematic variation of the superconducting transition temperature (Tc) as a function of time. Immediately after synthesis, this compound is not a superconductor, even though it contains appropriate amounts of sodium and water. The samples become superconducting with low Tc values after ~ 90 h. Tc continually increases until it reaches a maximum value (4.5 K) after about 260 h. Then Tc drops drastically, becoming non-superconducting approximately 100 h later. Corresponding time-dependent neutron powder diffraction data shows that the changes in superconductivity exhibited by the metastable cobaltate correspond to slow formation of oxygen vacancies in the CoO2 layers. In effect, the formation of these defects continually reduces the cobalt oxidation state causing the sample to evolve through its superconducting life cycle. Thus, the dome-shaped superconducting phase diagram is mapped as a function of cobalt oxidation state using a single sample. The width of this dome based on the formal oxidation state of cobalt is very narrow - approximately 0.1 valence units wide. Interestingly, the maximum Tc in NaxCoO2*yH2O occurs when the cobalt oxidation state is near 3.5. Thus, we speculate that the maximum Tc occurs near the charge ordered insulating state that correlates with the average cobalt oxidation state of 3.5.Comment: 22 pages, 9 figures, 1 tabl

    Water adsorption on amorphous silica surfaces: A Car-Parrinello simulation study

    Full text link
    A combination of classical molecular dynamics (MD) and ab initio Car-Parrinello molecular dynamics (CPMD) simulations is used to investigate the adsorption of water on a free amorphous silica surface. From the classical MD SiO_2 configurations with a free surface are generated which are then used as starting configurations for the CPMD.We study the reaction of a water molecule with a two-membered ring at the temperature T=300K. We show that the result of this reaction is the formation of two silanol groups on the surface. The activation energy of the reaction is estimated and it is shown that the reaction is exothermic.Comment: 12 pages, 6 figures, to be published in J. Phys.: Condens. Matte

    Combining gravity with the forces of the standard model on a cosmological scale

    Full text link
    We prove the existence of a spectral resolution of the Wheeler-DeWitt equation when the underlying spacetime is a Friedman universe with flat spatial slices and where the matter fields are comprised of the strong interaction, with \SU(3) replaced by a general \SU(n), n≥2n\ge 2, and the electro-weak interaction. The wave functions are maps from R[4n+10]\R[4n+10] to a subspace of the antisymmetric Fock space, and one noteworthy result is that, whenever the electro-weak interaction is involved, the image of an eigenfunction is in general not one dimensional, i.e., in general it makes no sense specifying a fermion and looking for an eigenfunction the range of which is contained in the one dimensional vector space spanned by the fermion.Comment: 53 pages, v6: some typos correcte

    Microscopic calculation of the phonon dynamics of Sr2_{2}RuO4_{4} compared with La2_{2}CuO4_{4}

    Full text link
    The phonon dynamics of the low-temperature superconductor Sr2_{2}RuO4_{4} is calculated quantitatively in linear response theory and compared with the structurally isomorphic high-temperature superconductor La2_{2}CuO4_{4}. Our calculation corrects for a typical deficit of LDA-based calculations which always predict a too large electronic kzk_{z}-dispersion insufficient to describe the c-axis response in the real materials. With a more realistic computation of the electronic band structure the frequency and wavevector dependent irreducible polarization part of the density response function is determined and used for adiabatic and nonadiabatic phonon calculations. Our analysis for Sr2_{2}RuO4_{4} reveals important differences from the lattice dynamics of pp- and nn-doped cuprates. Consistent with experimental evidence from inelastic neutron scattering the anomalous doping related softening of the strongly coupling high-frequency oxygen bond-stretching modes (OBSM) which is generic for the cuprate superconductors is largely suppressed or completely absent, respectively, depending on the actual value of the on-site Coulomb repulsion of the Ru4d orbitals. Also the presence of a characteristic Λ1\Lambda_{1}-mode with a very steep dispersion coupling strongly with the electrons is missing in Sr2_{2}RuO4_{4}. Moreover, we evaluate the possibility of a phonon-plasmon scenario for Sr2_{2}RuO4_{4} which has been shown recently to be realistic for La2_{2}CuO4_{4}. In contrast to La2_{2}CuO4_{4} in Sr2_{2}RuO4_{4} the very low lying plasmons are overdamped along the c-axis.Comment: 30 pages, 16 figures, 4 tables, 33 reference

    Optical fiber interferometer for the study of ultrasonic waves in composite materials

    Get PDF
    The possibility of acoustic emission detection in composites using embedded optical fibers as sensing elements was investigated. Optical fiber interferometry, fiber acoustic sensitivity, fiber interferometer calibration, and acoustic emission detection are reported. Adhesive bond layer dynamical properties using ultrasonic interface waves, the design and construction of an ultrasonic transducer with a two dimensional Gaussian pressure profile, and the development of an optical differential technique for the measurement of surface acoustic wave particle displacements and propagation direction are also examined

    The many faces of OSp(1|32)

    Get PDF
    We show that the complete superalgebra of symmetries, including central charges, that underlies F-theories, M-theories and type II string theories in dimensions 12, 11 and 10 of various signatures correspond to rewriting of the same OSp(1|32) algebra in different covariant ways. One only has to distinguish the complex and the unique real algebra. We develop a common framework to discuss all signatures theories by starting from the complex form of OSp(1|32). Theories are distinguished by the choice of basis for this algebra. We formulate dimensional reductions and dualities as changes of basis of the algebra. A second ingredient is the choice of a real form corresponding to a specific signature. The existence of the real form of the algebra selects preferred spacetime signatures. In particular, we show how the real d=10 IIA and IIB superalgebras for various signatures are related by generalized T-duality transformations that not only involve spacelike but also timelike directions. A third essential ingredient is that the translation generator in one theory plays the role of a central charge operator in the other theory. The identification of the translation generator in these algebras leads to the star algebras of Hull, which are characterized by the fact that the positive definite energy operator is not part of the translation generators. We apply our results to discuss different T-dual pictures of the D-instanton solution of Euclidean IIB supergravity.Comment: 30 pages, Latex, using lscape.st

    Quantum phantom cosmology

    Full text link
    We apply the formalism of quantum cosmology to models containing a phantom field. Three models are discussed explicitly: a toy model, a model with an exponential phantom potential, and a model with phantom field accompanied by a negative cosmological constant. In all these cases we calculate the classical trajectories in configuration space and give solutions to the Wheeler-DeWitt equation in quantum cosmology. In the cases of the toy model and the model with exponential potential we are able to solve the Wheeler-DeWitt equation exactly. For comparison, we also give the corresponding solutions for an ordinary scalar field. We discuss in particular the behaviour of wave packets in minisuperspace. For the phantom field these packets disperse in the region that corresponds to the Big Rip singularity. This thus constitutes a genuine quantum region at large scales, described by a regular solution of the Wheeler-DeWitt equation. For the ordinary scalar field, the Big-Bang singularity is avoided. Some remarks on the arrow of time in phantom models as well as on the relation of phantom models to loop quantum cosmology are given.Comment: 21 pages, 6 figure

    Quantum cosmological Friedman models with a massive Yang-Mills field

    Full text link
    We prove the existence of a spectral resolution of the Wheeler-DeWitt equation when the matter field is provided by a massive Yang-Mills field. The resolution is achieved by first solving the free eigenvalue problem for the gravitational field and then the constrained eigenvalue problem for the Yang-Mills field. In the latter case the mass of the Yang-Mills field assumes the role of the eigenvalue.Comment: 16 pages, v3: typos corrected, final version, to appear in CQ

    Tradeoff between short-term and long-term adaptation in a changing environment

    Get PDF
    We investigate the competition dynamics of two microbial or viral strains that live in an environment that switches periodically between two states. One of the strains is adapted to the long-term environment, but pays a short-term cost, while the other is adapted to the short-term environment and pays a cost in the long term. We explore the tradeoff between these alternative strategies in extensive numerical simulations, and present a simple analytic model that can predict the outcome of these competitions as a function of the mutation rate and the time scale of the environmental changes. Our model is relevant for arboviruses, which alternate between different host species on a regular basis.Comment: 9 pages, 3 figures, PRE in pres

    Black Holes, Branes and Superconformal Symmetry

    Full text link
    The main focus of this lecture is on extended objects in adS*S bosonic backgrounds with unbroken supersymmetry. The backgrounds are argued to be exact, special consideration are given to the non-maximal supersymmetry case. The near horizon superspace construction is explained. The superconformal symmetry appears in the worldvolume actions as the superisometry of the near horizon superspace, like the superPoincare symmetry of GS superstring and BST supermembrane in the flat superspace. The issues in gauge fixing of local kappa-symmetry are reviewed. We describe the features of the gauge-fixed IIB superstring in adS(5)*S(5) background with RR 5-form. From a truncated boundary version of it we derive an analytic N=2 off shell harmonic superspace of Yang-Mills theory. The reality condition of the analytic subspace, which includes the antipodal map on the sphere, has a simple meaning of the symmetry of the string action in the curved space. The relevant issues of black holes and superconformal mechanics are addressed.Comment: 34 pages, Latex. To be published in the Proceedings of a conference held in Corfu, Greece in September 1998. Improvement in Sec. 3.
    • …
    corecore