3,663 research outputs found
Development, implementation and evaluation of satellite-aided agricultural monitoring systems
Research activities in support of AgRISTARS Inventory Technology Development Project in the use of aerospace remote sensing for agricultural inventory described include: (1) corn and soybean crop spectral temporal signature characterization; (2) efficient area estimation techniques development; and (3) advanced satellite and sensor system definition. Studies include a statistical evaluation of the impact of cultural and environmental factors on crop spectral profiles, the development and evaluation of an automatic crop area estimation procedure, and the joint use of SEASAT-SAR and LANDSAT MSS for crop inventory
Thermodynamics and Fractional Fokker-Planck Equations
The relaxation to equilibrium in many systems which show strange kinetics is
described by fractional Fokker-Planck equations (FFPEs). These can be
considered as phenomenological equations of linear nonequilibrium theory. We
show that the FFPEs describe the system whose noise in equilibrium funfills the
Nyquist theorem. Moreover, we show that for subdiffusive dynamics the solutions
of the corresponding FFPEs are probability densities for all cases where the
solutions of normal Fokker-Planck equation (with the same Fokker-Planck
operator and with the same initial and boundary conditions) exist. The
solutions of the FFPEs for superdiffusive dynamics are not always probability
densities. This fact means only that the corresponding kinetic coefficients are
incompatible with each other and with the initial conditions
Measurement techniques for cryogenic Ka-band microstrip antennas
The measurement of cryogenic antennas poses unique logistical problems since the antenna under test must be embedded in a cooling chamber. A method of measuring the performance of cryogenic microstrip antennas using a closed cycle gas cooled refrigerator in a far field range is described. Antenna patterns showing the performance of gold and superconducting Ka-band microstrip antennas at various temperatures are presented
Diffusion mechanisms of localised knots along a polymer
We consider the diffusive motion of a localized knot along a linear polymer
chain. In particular, we derive the mean diffusion time of the knot before it
escapes from the chain once it gets close to one of the chain ends.
Self-reptation of the entire chain between either end and the knot position,
during which the knot is provided with free volume, leads to an L^3 scaling of
diffusion time; for sufficiently long chains, subdiffusion will enhance this
time even more. Conversely, we propose local ``breathing'', i.e., local
conformational rearrangement inside the knot region (KR) and its immediate
neighbourhood, as additional mechanism. The contribution of KR-breathing to the
diffusion time scales only quadratically, L^2, speeding up the knot escape
considerably and guaranteeing finite knot mobility even for very long chains.Comment: 7 pages, 2 figures. Accepted to Europhys. Let
Subdiffusion-limited reactions
We consider the coagulation dynamics A+A -> A and A+A A and the
annihilation dynamics A+A -> 0 for particles moving subdiffusively in one
dimension. This scenario combines the "anomalous kinetics" and "anomalous
diffusion" problems, each of which leads to interesting dynamics separately and
to even more interesting dynamics in combination. Our analysis is based on the
fractional diffusion equation
Nonextensive diffusion as nonlinear response
The porous media equation has been proposed as a phenomenological
``non-extensive'' generalization of classical diffusion. Here, we show that a
very similar equation can be derived, in a systematic manner, for a classical
fluid by assuming nonlinear response, i.e. that the diffusive flux depends on
gradients of a power of the concentration. The present equation distinguishes
from the porous media equation in that it describes \emph{% generalized
classical} diffusion, i.e. with scaling, but with a generalized
Einstein relation, and with power-law probability distributions typical of
nonextensive statistical mechanics
Users manual for the US baseline corn and soybean segment classification procedure
A user's manual for the classification component of the FY-81 U.S. Corn and Soybean Pilot Experiment in the Foreign Commodity Production Forecasting Project of AgRISTARS is presented. This experiment is one of several major experiments in AgRISTARS designed to measure and advance the remote sensing technologies for cropland inventory. The classification procedure discussed is designed to produce segment proportion estimates for corn and soybeans in the U.S. Corn Belt (Iowa, Indiana, and Illinois) using LANDSAT data. The estimates are produced by an integrated Analyst/Machine procedure. The Analyst selects acquisitions, participates in stratification, and assigns crop labels to selected samples. In concert with the Analyst, the machine digitally preprocesses LANDSAT data to remove external effects, stratifies the data into field like units and into spectrally similar groups, statistically samples the data for Analyst labeling, and combines the labeled samples into a final estimate
Closed-loop and congestion control of the global carbon climate system
<jats:title>Abstract</jats:title><jats:p>The global carbon-climate system is a complex dynamical system with multiple feedbacks among components, and to steer this system away from dangerous climate change, it may not be enough to prescribe action according to long-term scenarios of fossil fuel emissions. We introduce here concepts from control theory, a branch of applied mathematics that is effective at steering complex dynamical systems to desired states, and distinguish between open- and closed-loop control. We attempt (1) to show that current scientific work on carbon-climate feedbacks and climate policy more closely resembles the conceptual model of open- than closed-loop control, (2) to introduce a mathematical generalization of the carbon-climate system as a compartmental dynamical system that can facilitate the formal treatment of the closed-loop control problem, and (3) to formulate carbon-climate control as a congestion control problem, discussing important concepts such as observability and controllability. We also show that most previous discussions on climate change mitigation and policy development have relied on an implicit assumption of open-loop control that does not consider frequent corrections due to deviations of goals from observations. Using a reduced complexity model, we illustrate that the problem of managing the global carbon cycle can be abstracted as a network congestion problem, accounting for nonlinear behavior and feedback from a global carbon monitoring system. As opposed to <jats:italic>scenarios</jats:italic>, the goal of closed-loop control is to develop <jats:italic>rules</jats:italic> for continuously steering the global carbon-climate system away from dangerous climate change.</jats:p>
- …