The porous media equation has been proposed as a phenomenological
``non-extensive'' generalization of classical diffusion. Here, we show that a
very similar equation can be derived, in a systematic manner, for a classical
fluid by assuming nonlinear response, i.e. that the diffusive flux depends on
gradients of a power of the concentration. The present equation distinguishes
from the porous media equation in that it describes \emph{% generalized
classical} diffusion, i.e. with r/Dt scaling, but with a generalized
Einstein relation, and with power-law probability distributions typical of
nonextensive statistical mechanics