506 research outputs found

    On The Importance Of The Interclump Medium For Superionization: O VI Formation In The Wind Of Zeta Puppis

    Get PDF
    We have studied superionization and X-ray line formation in the spectra of zeta Pup using our new stellar atmosphere code (XCMFGEN) that can be used to simultaneously analyze optical, UV, and X-ray observations. Here, we present results on the formation of the O VI lambda lambda 1032, 1038 doublet. Our simulations, supported by simple theoretical calculations, show that clumped wind models that assume void in the interclump space cannot reproduce the observed O vi profiles. However, enough O vi can be produced if the voids are filled by a low-density gas. The recombination of O vi is very efficient in the dense material, but in the tenuous interclump region an observable amount of O vi can be maintained. We also find that different UV resonance lines are sensitive to different density regimes in z Pup: C IV is almost exclusively formed within the densest regions, while the majority of O vi resides between clumps. N v is an intermediate case, with contributions from both the tenuous gas and clumps

    On the Importance of the Interclump Medium for Superionization: O VI Formation in the Wind of Zeta Pup

    Full text link
    We have studied superionization and X-ray line formation in the spectra of Zeta Pup using our new stellar atmosphere code (XCMFGEN) that can be used to simultaneously analyze optical, UV, and X-ray observations. Here, we present results on the formation of the O VI ll1032, 1038 doublet. Our simulations, supported by simple theoretical calculations, show that clumped wind models that assume void in the interclump space cannot reproduce the observed O VI profiles. However, enough O VI can be produced if the voids are filled by a low density gas. The recombination of O VI is very efficient in the dense material but in the tenuous interclump region an observable amount of O VI can be maintained. We also find that different UV resonance lines are sensitive to different density regimes in Zeta Pup : C IV is almost exclusively formed within the densest regions, while the majority of O VI resides between clumps. N V is an intermediate case, with contributions from both the tenuous gas and clumps.Comment: Accepted for publication in ApJL, 4 pages with 3 figure

    Discovery Of A Magnetic Field In The Rapidly Rotating O-Type Secondary Of The Colliding-Wind Binary HD 47129 (Plaskett\u27s Star)

    Get PDF
    We report the detection of a strong, organized magnetic field in the secondary component of the massive O8III/I+O7.5V/III double-lined spectroscopic binary system HD 47129 (Plaskett\u27s star) in the context of the Magnetism in Massive Stars survey. Eight independent Stokes V observations were acquired using the Echelle SpectroPolarimetric Device for the Observations of Stars (ESPaDOnS) spectropolarimeter at the Canada-France-Hawaii Telescope and the Narval spectropolarimeter at the Telescope Bernard Lyot. Using least-squares deconvolution we obtain definite detections of signal in Stokes V in three observations. No significant signal is detected in the diagnostic null (N) spectra. The Zeeman signatures are broad and track the radial velocity of the secondary component; we therefore conclude that the rapidly rotating secondary component is the magnetized star. Correcting the polarized spectra for the line and continuum of the (sharp-lined) primary, we measured the longitudinal magnetic field from each observation. The longitudinal field of the secondary is variable and exhibits extreme values of -810 +/- 150 and +680 +/- 190 G, implying a minimum surface dipole polar strength of 2850 +/- 500 G. In contrast, we derive an upper limit (3 sigma) to the primary\u27s surface magnetic field of 230 G. The combination of a strong magnetic field and rapid rotation leads us to conclude that the secondary hosts a centrifugal magnetosphere fed through a magnetically confined wind. We revisit the properties of the optical line profiles and X-ray emission - previously interpreted as a consequence of colliding stellar winds - in this context. We conclude that HD 47129 represents a heretofore unique stellar system - a close, massive binary with a rapidly rotating, magnetized component - that will be a rich target for further study

    Vision-Depth Landmarks and Inertial Fusion for Navigation in Degraded Visual Environments

    Full text link
    This paper proposes a method for tight fusion of visual, depth and inertial data in order to extend robotic capabilities for navigation in GPS-denied, poorly illuminated, and texture-less environments. Visual and depth information are fused at the feature detection and descriptor extraction levels to augment one sensing modality with the other. These multimodal features are then further integrated with inertial sensor cues using an extended Kalman filter to estimate the robot pose, sensor bias terms, and landmark positions simultaneously as part of the filter state. As demonstrated through a set of hand-held and Micro Aerial Vehicle experiments, the proposed algorithm is shown to perform reliably in challenging visually-degraded environments using RGB-D information from a lightweight and low-cost sensor and data from an IMU.Comment: 11 pages, 6 figures, Published in International Symposium on Visual Computing (ISVC) 201

    Chandra Spectral Measurements Of The O Supergiant ζ Puppis Indicate A Surprising Increase In The Wind Mass-Loss Rate Over 18 Yr

    Get PDF
    New long Chandra grating observations of the O supergiant ζ Pup show not only a brightening of the X-ray emission line flux of 13 per cent in the 18 yr since Chandra’s first observing cycle, but also clear evidence – at more than 4σ significance – of increased wind absorption signatures in its Doppler-broadened line profiles. We demonstrate this with non-parametric analysis of the profiles as well as Gaussian fitting and then use line-profile model fitting to derive a mass-loss rate of 2.47 ± 0.09 × 10−6[Math Processing Error]⁠, which is a 40 per cent increase over the value obtained from the cycle 1 data. The increase in the individual emission line fluxes is greater for short-wavelength lines than long-wavelength lines, as would be expected if a uniform increase in line emission is accompanied by an increase in the wavelength-dependent absorption by the cold wind in which the shock-heated plasma is embedded
    corecore