176 research outputs found

    Fluorescent Probes for Ecto-5′-nucleotidase (CD73)

    Get PDF
    Ecto-5′-nucleotidase (CD73) catalyzes the hydrolysis of AMP to anti-inflammatory, immunosuppressive adenosine. It is expressed on vascular endothelial, epithelial, and also numerous cancer cells where it strongly contributes to an immunosuppressive microenvironment. In the present study we designed and synthesized fluorescent-labeled CD73 inhibitors with low nanomolar affinity and high selectivity based on N6-benzyl-α,β-methylene-ADP (PSB-12379) as a lead structure. Fluorescein was attached to the benzyl residue via different linkers resulting in PSB-19416 (14b, Ki12.6 nM) and PSB-18332 (14a, Ki2.98 nM) as fluorescent high-affinity probes for CD73. These compounds are anticipated to become useful tools for biological studies, drug screening, and diagnostic applications

    FOXP3 Inhibitory Peptide P60 Increases Efficacy of Cytokine-induced Killer Cells against Renal and Pancreatic Cancer Cells

    Get PDF
    Background/Aim: Cytokine-induced killer (CIK) cells are ex vivo expanded major histocompatibility complex (MHC)-unrestricted cytotoxic cells with promising effects against a variety of cancer types. Regulatory T-cells (T-reg) have been shown to reduce the effectiveness of CIK cells against tumor cells. Peptide P60 has been shown to inhibit the immunosuppressive functions of T-regs. This study aimed at examining the effect of p60 on CIK cells efficacy against renal and pancreatic cancer cells. Materials and Methods: The effect of P60 on CIK cytotoxicity was examined using flow cytometry, WST-8-based cell viability assay and interferon γ (IFNγ) ELISA. Results: P60 treatment resulted in a significant decrease in the viability of renal and pancreatic cancer cell lines co-cultured with CIK cells. No increase in IFNγ secretion from CIK cells was detected following treatment with P60. P60 caused no changes in the distribution of major effector cell populations in CIK cell cultures. Conclusion: P60 may potentiate CIK cell cytotoxicity against tumor cells

    Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD

    Get PDF
    Background In models of COPD, environmental stressors induce innate immune responses, inflammasome activation and inflammation. However, the interaction between these responses and their role in driving pulmonary inflammation in stable COPD is unknown. Objectives To investigate the activation of innate immunity and inflammasome pathways in the bronchial mucosa and bronchoalveolar lavage (BAL) of patients with stable COPD of different severity and control healthy smokers and non-smokers. Methods Innate immune mediators (interleukin (IL)-6, IL-7, IL-10, IL-27, IL-37, thymic stromal lymphopoietin (TSLP), interferon γ and their receptors, STAT1 and pSTAT1) and inflammasome components (NLRP3, NALP7, caspase 1, IL-1β and its receptors, IL-18, IL-33, ST2) were measured in the bronchial mucosa using immunohistochemistry. IL-6, soluble IL-6R, sgp130, IL-7, IL-27, HMGB1, IL-33, IL-37 and soluble ST2 were measured in BAL using ELISA. Results In bronchial biopsies IL-27+ and pSTAT1+ cells are increased in patients with severe COPD compared with control healthy smokers. IL-7+ cells are increased in patients with COPD and control smokers compared with control non-smokers. In severe stable COPD IL-7R+, IL-27R+ and TSLPR+ cells are increased in comparison with both control groups. The NALP3 inflammasome is not activated in patients with stable COPD compared with control subjects. The inflammasome inhibitory molecules NALP7 and IL-37 are increased in patients with COPD compared with control smokers. IL-6 levels are increased in BAL from patients with stable COPD compared with control smokers with normal lung function whereas IL-1β and IL-18 were similar across all groups. Conclusions Increased expression of IL-27, IL-37 and NALP7 in the bronchial mucosa may be involved in progression of stable COPD

    The Epigenetic Evolution of Glioma Is Determined by the IDH1 Mutation Status and Treatment Regimen

    Get PDF
    Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype.</p
    corecore