7,797 research outputs found

    Benchmark on neutron capture extracted from (d,p)(d,p) reactions

    Get PDF
    Direct neutron capture reactions play an important role in nuclear astrophysics and applied physics. Since for most unstable short-lived nuclei it is not possible to measure the (n,γ)(n, \gamma) cross sections, (d,p)(d,p) reactions have been used as an alternative indirect tool. We analyze simultaneously 48Ca(d,p)49Ca^{48}{\rm Ca}(d,p)^{49}{\rm Ca} at deuteron energies 2,13,192, 13, 19 and 56 MeV and the thermal (n,γ)(n,\gamma) reaction at 25 meV. We include results for the ground state and the first excited state of 49^{49}Ca. From the low-energy (d,p)(d,p) reaction, the neutron asymptotic normalization coefficient (ANC) is determined. Using this ANC, we extract the spectroscopic factor (SF) from the higher energy (d,p)(d,p) data and the (n,γ)(n, \gamma) data. The SF obtained through the 56 MeV (d,p)(d,p) data are less accurate but consistent with those from the thermal capture. We show that to have a similar dependence on the single particle parameters as in the (n,γ)(n, \gamma), the (d,p) reaction should be measured at 30 MeV.Comment: 5 pg, 4 figs, Phys. Rev. C (rapid) in pres

    Fluctuations and oscillations in a simple epidemic model

    Full text link
    We show that the simplest stochastic epidemiological models with spatial correlations exhibit two types of oscillatory behaviour in the endemic phase. In a large parameter range, the oscillations are due to resonant amplification of stochastic fluctuations, a general mechanism first reported for predator-prey dynamics. In a narrow range of parameters that includes many infectious diseases which confer long lasting immunity the oscillations persist for infinite populations. This effect is apparent in simulations of the stochastic process in systems of variable size, and can be understood from the phase diagram of the deterministic pair approximation equations. The two mechanisms combined play a central role in explaining the ubiquity of oscillatory behaviour in real data and in simulation results of epidemic and other related models.Comment: acknowledgments added; a typo in the discussion that follows Eq. (3) is corrected

    Characterization of Plum Procyanidins by Thiolytic Depolymerization

    Get PDF
    The phenolic compounds of ?Green Gage? (GG) plums (Prunus domestica L.), ?Rainha Cla?udia Verde?, from a ?protected designation of origin? (PDO), in Portugal, were quantified in both flesh and skin tissues of plums collected in two different orchards (GG-V and GG-C). Analyzes of phenolic compounds were also performed on another GG European plum obtained in France (GG-F) and two other French plums, ?Mirabelle? (M) and ?Golden Japan? (GJ). Thiolysis was used for the first time in the analysis of plum phenolic compounds. This methodology showed that the flesh and skin contain a large proportion of flavan-3-ols, which account, respectively, for 92 and 85% in GJ, 61 and 44% in GG-V, 62 and 48% in GG-C, 54 and 27% in M, and 45 and 37% in GG-F. Terminal units of procyanidins observed in plums are mainly (+)-catechin (54?77% of all terminal units in flesh and 57?81% in skin). The GJ plums showed a phenolic composition different from all of the others, with a lower content of chlorogenic acid isomers and the presence of A-type procyanidins as dimers and terminal residues of polymerized forms. The average degree of polymerization (DPn) of plum procyanidins was higher in the flesh (5?9 units) than in the skin (4?6 units). Procyanidin B7 was observed in the flesh of all GG plums and in the skin of the Portuguese ones. Principal component analysis of the phenolic composition of the flesh and skin of these plums obtained after thiolysis allowed their distinction according to the variety and origin, opening the possibility of the use of phenolic composition for variety/origin identification

    Phase lag in epidemics on a network of cities

    Full text link
    We study the synchronisation and phase-lag of fluctuations in the number of infected individuals in a network of cities between which individuals commute. The frequency and amplitude of these oscillations is known to be very well captured by the van Kampen system-size expansion, and we use this approximation to compute the complex coherence function that describes their correlation. We find that, if the infection rate differs from city to city and the coupling between them is not too strong, these oscillations are synchronised with a well defined phase lag between cities. The analytic description of the effect is shown to be in good agreement with the results of stochastic simulations for realistic population sizes.Comment: 10 pages, 6 figure

    Produtividade de Panicum maximum jacq., linhagem k 187b e cultivar Coloniao sob pastejo.

    Get PDF
    bitstream/item/137572/1/PESQ-EM-ANDAMENTO-29.pdfCNPGC

    The Casiquiare river acts as a corridor between the Amazonas and Orinoco river basins: biogeographic analysis of the genus Cichla

    Full text link
    The Casiquiare River is a unique biogeographic corridor between the Orinoco and Amazonas basins. We investigated the importance of this connection for Neotropical fishes using peacock cichlids ( Cichla spp.) as a model system. We tested whether the Casiquiare provides a conduit for gene flow between contemporary populations, and investigated the origin of biogeographic distributions that span the Casiquiare. Using sequences from the mitochondrial control region of three focal species ( C. temensis , C. monoculus , and C. orinocensis ) whose distributions include the Amazonas, Orinoco, and Casiquiare, we constructed maximum likelihood phylograms of haplotypes and analyzed the populations under an isolation-with-migration coalescent model. Our analyses suggest that populations of all three species have experienced some degree of gene flow via the Casiquiare. We also generated a mitochondrial genealogy of all Cichla species using >2000 bp and performed a dispersal-vicariance analysis (DIVA) to reconstruct the historical biogeography of the genus. This analysis, when combined with the intraspecific results, supports two instances of dispersal from the Amazonas to the Orinoco. Thus, our results support the idea that the Casiquiare connection is important across temporal scales, facilitating both gene flow and the dispersal and range expansion of species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79059/1/j.1365-294X.2010.04540.x.pd

    DYNAMICAL SIMULATION OF A VALVETRAIN MECHANISM: AN ENGINEERING EDUCATION APPROACH

    Get PDF
    The present work aims to present a valvetrain model considering the dynamics functioning aspects of an Otto’s engine. The model will be constructed using Adams/View® software, which is a powerful modeling and simulating environment of dynamic systems. It allows building, simulating, refining and optimizing any mechanical system. In fact, the model will help engineering students to understand how the mechanism works, in terms of displacement, velocity and acceleration of the valve as a function of the time. It is also possible to know the behavior of the force in the spring as a function of the time and, finally, the torque applied in the cam due to a angular velocity input. Relative to spring force, during the Otto engine cycle, the cam lobe must be able to open and close the valve as fast and as smoothly as possible. The force responsible to close the valve is applied by the valve spring, which is also responsible for keeping contact between the cam lobe and the valve. Dynamic forces impose limits on cam and valve lift. Thus, the simulation model allows determining these forces and displacements through the cam rotation. As main objectives the authors wish to make available a model which is capable to show in 3D the animation of a valvetrain mechanism of an Otto engine, obtaining the main curves for analysis and evaluation of this mechanism performance

    Deformed Gaussian Orthogonal Ensemble Analysis of the Interacting Boson Model

    Full text link
    A Deformed Gaussian Orthogonal Ensemble (DGOE) which interpolates between the Gaussian Orthogonal Ensemble and a Poissonian Ensemble is constructed. This new ensemble is then applied to the analysis of the chaotic properties of the low lying collective states of nuclei described by the Interacting Boson Model (IBM). This model undergoes a transition order-chaos-order from the SU(3)SU(3) limit to the O(6)O(6) limit. Our analysis shows that the quantum fluctuations of the IBM Hamiltonian, both of the spectrum and the eigenvectors, follow the expected behaviour predicted by the DGOE when one goes from one limit to the other.Comment: 10 pages, 4 figures (avaiable upon request), IFUSP/P-1086 Replaced version: in the previous version the name of one of the authors was omitte
    corecore