3,063 research outputs found

    B709: An Evaluation of the Potential for Maine Raised Oysters

    Get PDF
    The primary purpose of the study reported here was to investigate the feasibility of developing profitable markets for Maine raised Ostrea edulis. More specifically the objective were to (1) evaluate trend in oyster supplies, including landings, imports, and exports in the U.S., Canada and France; (2) analyze trends in oyster consumption in the U.S., Canada, and France and develop a predictive equation based on factors influencing consumption in each of these areas; (3) evaluate the economic feasibility of developing a half-shell oyster market for Maine raised oysters.https://digitalcommons.library.umaine.edu/aes_bulletin/1071/thumbnail.jp

    Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage DC gun

    Full text link
    We present a comparison between space charge calculations and direct measurements of the transverse phase space for space charge dominated electron bunches after a high voltage photoemission DC gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit setup for a set of parameters such as charge per bunch and the solenoid current. The data is compared with detailed simulations using 3D space charge codes GPT and Parmela3D with initial particle distributions created from the measured transverse and temporal laser profiles. Beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach the theoretical maximum set by the thermal energy and accelerating field at the photocathode.Comment: 11 pages, 23 figures. submitted to Phys Rev ST-A

    The Spitzer c2d Survey of Nearby Dense Cores. IX. Discovery of a Very Low Luminosity Object Driving a Molecular Outflow in the Dense Core L673-7

    Full text link
    We present new infrared, submillimeter, and millimeter observations of the dense core L673-7 and report the discovery of a low-luminosity, embedded Class 0 protostar driving a molecular outflow. L673-7 is seen in absorption against the mid-infrared background in 5.8, 8, and 24 micron Spitzer images, allowing for a derivation of the column density profile and total enclosed mass of L673-7, independent of dust temperature assumptions. Estimates of the core mass from these absorption profiles range from 0.2-4.5 solar masses. Millimeter continuum emission indicates a mass of about 2 solar masses, both from a direct calculation assuming isothermal dust and from dust radiative transfer models constrained by the millimeter observations. We use dust radiative transfer models to constrain the internal luminosity of L673-7, defined to be the luminosity of the central source and excluding the luminosity from external heating, to be 0.01-0.045 solar luminosities, with 0.04 solar luminosities the most likely value. L673-7 is thus classified as a very low luminosity object (VeLLO), and is among the lowest luminosity VeLLOs yet studied. We calculate the kinematic and dynamic properties of the molecular outflow in the standard manner, and we show that the expected accretion luminosity based on these outflow properties is greater than or equal to 0.36 solar luminosities. The discrepancy between this expected accretion luminosity and the internal luminosity derived from dust radiative transfer models indicates that the current accretion rate is much lower than the average rate over the lifetime of the outflow. Although the protostar embedded within L673-7 is consistent with currently being substellar, it is unlikely to remain as such given the substantial mass reservoir remaining in the core.Comment: 19 pages, 14 figures. Accepted by Ap

    Can Protostellar Outflows Set Stellar Masses?

    Full text link
    The opening angles of some protostellar outflows appear too narrow to match the expected core-star mass efficiency SFE = 0.3-0.5 if outflow cavity volume traces outflow mass, with a conical shape and a maximum opening angle near 90 deg. However, outflow cavities with paraboloidal shape and wider angles are more consistent with observed estimates of the SFE. This paper presents a model of infall and outflow evolution based on these properties. The initial state is a truncated singular isothermal sphere which has mass ≈\approx1 M⊙M_\odot, free fall time ≈\approx80 kyr, and small fractions of magnetic, rotational, and turbulent energy. The core collapses pressure-free as its protostar and disk launch a paraboloidal wide-angle wind. The cavity walls expand radially and entrain envelope gas into the outflow. The model matches SFE values when the outflow mass increases faster than the protostar mass by a factor 1 - 2, yielding protostar masses typical of the IMF. It matches observed outflow angles if the outflow mass increases at nearly the same rate as the cavity volume. The predicted outflow angles are then typically ∼\sim50 deg as they increase rapidly through the stage 0 duration of ∼\sim40 kyr. They increase more slowly up to ∼\sim110 deg during their stage I duration of ∼\sim70 kyr. With these outflow rates and shapes, model predictions appear consistent with observational estimates of typical stellar masses, SFEs, stage durations, and outflow angles, with no need for external mechanisms of core dispersal.Comment: Accepted for publication by The Astrophysical Journal; 47 pages, 10 figure

    The RMS Survey: Ammonia and water maser analysis of massive star forming regions

    Full text link
    The Red MSX Source (RMS) survey has identified a sample of ~1200 massive young stellar objects (MYSOs), compact and ultra compact HII regions from a sample of ~2000 MSX and 2MASS colour selected sources. We have used the 100 m Green Bank telescope to search for 22-24 GHz water maser and ammonia (1,1), (2,2) and (3,3) emission towards ~600 RMS sources located within the northern Galactic plane. We have identified 308 H2O masers which corresponds to an overall detection rate of ~50%. Abridged: We detect ammonia emission towards 479 of these massive young stars, which corresponds to ~80%. Ammonia is an excellent probe of high density gas allowing us to measure key parameters such as gas temperatures, opacities, and column densities, as well as providing an insight into the gas kinematics. The average kinetic temperature, FWHM line width and total NH3 column density for the sample are approximately 22 K, 2 km/s and 2x10^{15} cm^{-2}, respectively. We find that the NH3 (1,1) line width and kinetic temperature are correlated with luminosity and finding no underlying dependence of these parameters on the evolutionary phase of the embedded sources, we conclude that the observed trends in the derived parameters are more likely to be due to the energy output of the central source and/or the line width-clump mass relationship. The velocities of the peak H2O masers and the NH3 emission are in excellent agreement with each other, which would strongly suggest an association between the dense gas and the maser emission. Moreover, we find the bolometric luminosity of the embedded source and the isotropic luminosity of the H2O maser are also correlated. We conclude from the correlations of the cloud and water maser velocities and the bolometric and maser luminosity that there is a strong dynamical relationship between the embedded young massive star and the H2O maser.Comment: 17 pages and 17 figures and 8 tables. Tables\,2 and 5 and full versions of Figs. 3 and 7 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A

    Design for validation: An approach to systems validation

    Get PDF
    Every complex system built is validated in some manner. Computer validation begins with review of the system design. As systems became too complicated for one person to review, validation began to rely on the application of adhoc methods by many individuals. As the cost of the changes mounted and the expense of failure increased, more organized procedures became essential. Attempts at devising and carrying out those procedures showed that validation is indeed a difficult technical problem. The successful transformation of the validation process into a systematic series of formally sound, integrated steps is necessary if the liability inherent in the future digita-system-based avionic and space systems is to be minimized. A suggested framework and timetable for the transformtion are presented. Basic working definitions of two pivotal ideas (validation and system life-cyle) are provided and show how the two concepts interact. Many examples are given of past and present validation activities by NASA and others. A conceptual framework is presented for the validation process. Finally, important areas are listed for ongoing development of the validation process at NASA Langley Research Center

    Vortex wake alleviation studies with a variable twist wing

    Get PDF
    Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause
    • …
    corecore