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1. INTRODUCTION 
Every complex system built is validated in some manner. Computer validation 

began with one person reviewing the design of the system. As systems became too 
complicated for one person to  review, validation began to rely on the application of ad 
hoc methods by many individuals. As the cost of changes mounted and the expense of 
failures increased, more organized procedures became essential. Attempts at  devising 
and carrying out those procedures showed that  validation is indeed a difficult technical 
problem. 

The successful transformation of the validation process into a systematic series of 
formally sound, integrated steps is necessary if the liability inherent in future digital- 
system-based avionic and space systems is to be minimized. This report presents a 
suggested framework and timetable for that  transformation. 

In sections two through four, we provide basic working definitions of two pivotal 
ideas - validation and system life-cycle, and show how the two concepts interact. 
Many examples are given of past  and present validation activities by NASA and oth- 
ers. In section five, we present a conceptual framework for the validation process. 
Finally, in sections six and seven, we list important areas for ongoing development of 
the validation process at NASA Langley Research Center (NASA-LaRC). 

2. DESIGN FOR VALIDATION 

future systems validation. We define the process as follows: 
The process which we refer to as design for validation is the panel’s vision of 

0 Vulidution is the process of using quantitative theory and measurements to pro- 
vide enough confidence in a system’s capability to deliver its specified service [l]. 

The definition of enough confidence will vary with the type of system, its com- 
plexity, its mission, its repairability, its intended life-cycle, its maintenance proto- 
cols, its capability for self test, its failure modes, its testability, and other factors. 
A major theme of this report is that  the very high levels of confidence required of 
NASA’s mission-critical and life-critical systems cannat be provided only by sys- 
tem tests, no matter how extensive, but must be designed in sound design discip- 
lines and thorough design validation activities. 

0 Design for validotion is an integrated. approach to realizing verifiably correct sys- 
tems through the application of validation principles. 

The validation principles enumerated below, and discussed in more detail within 
the body of this report, are derived from existing commercial practice and from 
current research in computer science. 
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0 Design for validation begins with the system’s conception and continues through 
the entire system life-cycle. 

Design for validation must be an integral part of the systems research and 
develop men t process. 

0 Design for validation is based upon the use of automated tools. 

Automated tools will provide information capture and the analytical power 
required for conducting systematic validation activities which are fully integrated 
with each other and with the design process. 

0 Design for validation must play a central role in the planning and construction of 
future crucial systems, including flight controls, nuclear power systems, and stra- 
tegic defense systems. 

Design for validation must convincingly demonstrate tha t  these systems have 
attained the required level of dependability, as defined in the system specifica- 
tions. Dependability may be expressed, depending on the particular system, in 
terms of minimum uptime, maximum downtime, throughput under load, mode of 
degradation, data  error rates, or other parameters. 

0 Design for validation must be quantifiable and provide accountability. 

If it is not quantifiable, then results cannot be measured and improvements can- 
not be proven. If i t  does not provide accountability, then design decisions may be 
made casually and without adequate review or documentation. When system 
changes occur, their coisistency with the previous system must be shown. 

0 Design /or validation must be implemented hierarchically from the most abstract 
conception levels down through system operation. 

Design for validation must be systematic, comprehensive, and consistent within 
and between design levels. If any deviation from intended behavior occurs, its ori- 
gin must be able to be determined by tracing the system design process, beginning 
with the requirements. This method of hierarchical design has been widely 
explored and is currently in limited use for a few levels. Unfortunately, a 
comprehensive theory of design for the validation of complete systems does not 
yet exist. 
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0 Design for validation should use information gained from previously validated sys- 
tems. This information can be used only if it has been incorporated into a valida- 
tion knowledge base. 

0 Design for validation must be applicable to future systems. 

Advances in system engineering technology will continue to yield more powerful 
and widely distributed digital systems. The validation process must be capable of 
extension; that  is, it must be applicable to all digital systems, irrespective of size 
or application. 
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3. DIMENSIONS O F  THE VALIDATION PROCESS 
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Figure 1. The Validation Space 
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There are three important dimensions to validation. They can be conceptualized 
as forming a validation space. The dimensions are METHODS, PROGRESS, and 
hierarchical levels of DESCRIPTION, as shown in Figure 1. 

The METHODS dimension contains the full complement of present and future 
design fo r  validation activities. This dimension includes specification, design, emula- 
tion, modeling, proof, simulation, and test. 

PROGRESS through the life-cycle is seen as encompassing design for val idat ion 
activities conducted at different stages in the system life-cycle. The stages of progress 
are requirements, specification, design, implementation, and evaluation. Iteration 
occurs within and between stages in the life-cycle. Progress is made when the need to 
revisit a previous stage is eliminated. These stages must be planned and information 
about them must be traced and audited throughout the life-cycle. 

Hierarchical levels of DESCRIPTION refer to the levels of abstraction of the  sys- 
tem and its components. These levels are determined by constructing a hierarchical 
set of axiomatic and empirical models which encapsulate various views of the system. 
These models are used to measure the achievement of relevant system requirements. 
The ability to abstract is important to validation methods, irrespective of size or appli- 
cation. 

This validation space can be viewed as containing several subspaces which are 
prevalidation, the validation during the initial part of the design cycle; primary valida- 
tion, the important validation which is done during design before the product is 
shipped; and post validation, which is the validation and monitoring done in the field 
in order to ensure the growth of not only dependability but of our  belief in the valida- 
tion and assurance that  the system will really do the job i t  is designed to do. 

As any system is designed, its program forms a trace, or a walk, through this vali- 
dation space. In the beginning, consider the subsystem which consists of the require- 
ments, the specification methods necessary for the validation, and the abstract specifi- 
cation of the system. The next step that  the walk goes through will be determined by 
the abstraction of the specification levels. This process of determining a walk can be 
continued until the trace of the entire project effort is formed. 
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The left half of Figure 2 depicts the pre-validation stage of the system life-cycle. 
The right half depicts the development activities conducted which track the system 
from user expectations to a dependable system architecture. Experience from previous 
post-validation efforts are used as input to this stage. 

Validation methods begin with specifying the system. Specification methods are 
- formal methods, including language and notation, that  describe or represent the 

behavior of a system or subsystem in a hierarchical fashion. Hierarchy is a critical ele- 
ment of successful design and validation. 

Specification methods are used to state the mission requirements and define the 
system functions which meet those requirements. The critical process of defining mis- 
sion requirements should, of necessity, be an iterative process involving both users and 
designers. As the system is specified, a project file which captures the salient design 
and validation decisions is constructed. This file provides traceability for the system 
being developed and, once analyzed,. contributes to the validation data  base. 

The next pre-validation activities involve planning the analytical and empirical 
models to be developed and the validation experiments to be conducted. This activity, 
although performed at the pre-validation stage, pervades the validation and post- 
validation stages through the refinement of the models and the distillation of the 
experimental outcomes. This planning activity may well require the development of 
new validation techniques to demonstrate that  the system is meeting special system 
requirements. 

The different models pertain to parts of the system, potential system architec- 
tures, and mission requirements. The interrelations among these models are demon- 
strated and evaluated. This evaluation process results in the selection of a system 
architecture. 

Once the architecture is selected, the initial validation plan is refined. This plan 
becomes the basis for validation activities during the primary validation and post- 
validation stages of the system life-cycle. 

Output  from the pre-validation stage, in the form of validation information and a 
system architectural description, is passed to  the primary validation stage. 

. 
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3.2. P R W Y  VALIDATION 
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In the primary design and validation stage (shown in Figure 3), the inputs are the 
system architectural description and all of the previous work which was done for vali- 
dation. 

First, decompose the system into software and hardware and begin designing the 
software and the hardware in more detail. 

Now there is more information, so the models must be refined. This refinement 
means that the model interrelationships must be validated again. All interrelation- 
ships must be identified, demonstrated to be valid, and evaluated. The principle 
interrelationships used are the consistency and completeness of the models. Because of 
the hierarchy, show the consistency and completeness at all levels. 

At  each level there are different views of the system. They must be reconciled 
and shown to be consistent. Using many different views improves the completeness of 
the system validation. The next step is to keep updating the project file and to  con- 
tinue to evaluate the validation results. As the system is being designed, the subsys- 
tems must be verified, tested, and the adequacy of their responses noted. The system 
is then built from the validated subsystems and the final system test completed. 

Product assurance meets two needs - first, to  ensure that the system will satisfy 
its requirements and can be shipped to the customer; and second, to develop the pro- 
cedures required to monitor, maintain, test, and analyze operation of the system dur- 
ing use. 
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3.3. POST-VALIDATION 
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While the system is being operated (see Figure 4), it  must be tested and main- 
tained to ensure that its dependability continues. The system properties must be 
monitored; if system changes are made, the desired product assurance analysis must be 
redone. The system is re-evaluated to ensure it is operating as desired. 

The system properties are also being monitored. If at any time they appear to be 
unsatisfactory, they must be changed, even though they are not detracting from the 
system service. As these changes are determined by analyzing the operations, the sys- 
tem file is updated, system models are changed, and the validation is done again to 
ensure that  the system with the proper changes is not only validated, but that  its 
dependability or other attributes are improved by the change. 

3.4. CASE STUDIES IN VALIDATION 

On the following pages some simple examples of the dramatic intimacy of design 
and validation are shown. 
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The lBM design system[2] (see Figure 5), as used for the 3081 and the 3080X series 
design and validation, has the following properties: 

First, there are multilingual inputs. Each of the inputs to this process uses the 
language most convenient for it. These inputs are often not in the language used for 
the initial specifications. For example, the inputs on the left are the flow charts, 
which are in a language called the Basic Design Language for Cycle Simulation 
(BDL/CS). This is a moderately high-level design language. 

The next set of inputs are the test cases. These inputs use a format which is easi- 
est for test case design and application. 

The next inputs are the automated logic diagrams, or ALDs, as they have been 
called since the days of the IBM Stretch computer in the late 1950’s. They are now 
called the basic design language for simulation. These diagrams show the detailed 
logic of the complete computer system. Every gate is shown with its logical function, 
its logic family identification, and its electrical connections. 

Finally, the horizontal microcode is shown as an input. These are in the micro- 
code specification language. 

On the next level, several types of simulation and debugging tools are shown. The 
flow charts describe the functional units and are analyzed by cycle simulation. Cycle 
simulation does two things - i t  tests at a fairly high-level using the input test cases, 
and it also proves that  the timing is correct. The automated logic diagrams are also 
tested by hybrid simulation and by logic simulation using the second model. Finally, 
the horizontal microcode is tested. Then the information on the “all events” tape is 
used for automatic comparison of the outputs of the same tests run through these dif- 
ferent representations of the same physical system. 

The most important box for validation is the box labeled Static Analysis System. 
Since the basic design language for cycle simulation is a well-formulated language, it 
can be compiled and its compilation is a set of logic functions whose proper implemen- 
tation would guarantee tha t  the system would be exactly the one described in the flow 
charts. These logic functions, after being compiled, are compared with the actual logic 
functions for the system shown by the ALDs. 

Some of these functions were compiled using a different compiler, others were 
designed manually for maximum throughput. This static analysis system proves that 
the  circuit system implementation agrees with the design language implementation. 

The validation of these 500 OOO to 600 OOO logic circuits, using a formal system 
description, avoided changes to circuit chips, reduced turnaround time, and saved 66% 
from the normal system production schedule. 

13 



3.4.2. CASESTUDYTWO 

The set of tests 

f im,  m, B X E ,  B O ,  A B B E  

detects any detectable fault in the circuit GI. 
Fault b is detected by ABC. 

Because of redundancy, the fault line a s+I cannot be detected. 
If the fault line a s-a-1 exists, then the detectable fault line 
b s-a-0 cannot be detected. 

Figure 6. Logic Diagram[3] 
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Many circuits have redundant logical properties, either to fit standard packages or 
to help eliminate races. Figure 6 contains a simple logic diagram and a set of five tests 
which will reveal any detectable fault in the circuit. In order to determine the 
behavior of these circuits, we need the same information which was available during 
the circuit design. If changes will be made, it is much more efficient to make them 
during the design process than after the chips have been fabricated. 

3.4.3. CASESTUDYTHREE 
The project FAFTRCS (Full-Authority Fault-Tolerant Reactor Control System) is 

a project at Argonne National Laboratories to develop a full-authority fault-tolerant 
digital control for a reactor. The control system monitors the flow using indirect sen- 
sors. Due to a desire to construct a deliverable program and the difficulty of setting 
up a model, implementation of the flow sensor of validation software preceded the 
development of the system models. 

Subsequent. efforts to model and formally verify the actual software failed. This is 
not the only case in which such attempts have failed. Finally, a series of hierarchical 
models were developed for the operation of the hardware and software and proofs of 
the fault-tolerance of the generic application programs were devised. 

To ensure tha t  the reactor system and its control is properly validated, the 
software is now being rewritten to be consistent with the high level hierarchical models 
of the system. This software, with its known structure, will be proven to be valid 
using these models. 

. 
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4. CURRENT NASA VALIDATION RESEARCH 
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The current and. past research activities in AlRLAB at NASA-LaRC can be 
viewed as regions”i’d t h e  validation space (see Figure 7). These research and develop- 
ment activities have contributed to the development of methods and to  the accumula- 
tion of validation knowledge and experience. 

4.1. CARE III, HARP, and SURE 
The first set of activities to be consi-dered is use of axiomatic models, generally 

Markov or semi-Markov models, for system reliability evaluation. The first model was 
CARE 111 [4] [SI, the next was W [ 6 ]  [7], and the most recent model, currently under 
development, is SURE [8] [9]. CARE I11 was developed by Raytheon and has been 
improved and extended by Boeing Computer ‘Services Corporation. HARP embodies 
new ideas. The most important are the ideas for error handling using a set of Petr i  
nets. Finally, SURE uses more general. techniques, semi-Markov processes; it evaluates 
these quickly. It has been shown that  uncertainty in the input parameters, a frequent 
condition, contributes greatly to uncertainty in any detailed evaluation. 

4.2. DESIGN PROOFS 
The design proofs[lO] were done during the design of SIFT[11]. Six levels were 

defined and the theory of commutative diagrams relying upon only one language was 
used for the first five. It WBS started while the SIFT design was being performed and 
substantial changes were made in the SIFT physical design in order to produce proofs 
of consistency between hierarchical levels. The final code level was to use standard 
program verification techniques. The timing assumptions were verified by a timing 
analysis program. The  language used for all of the first five levels was SPECIAL, which 
was shown to be complicated and not very user friendly. This language is now being 

‘ ‘improved. 

4.3. DIAGNOSTIC EMULATION 
Diagnostic emulation(l21 at Langley is one of the examples of analyzing critical 

properties of gate-level implementations of digital systems, using a hardware model. 
Such a model supports the primary validation stage and gives information about what  
should be done during the testing stage. Other models are now being used. The York- 
town Simulation Engine (YSE)[13], which is only one of the types of engines used at 
IBM, AT&T, and other places, is able to describe up to a million logic functions, so it 
can easily describe the entire IBM 3081 .CPU. YSE then emulates the LBM 3081 
instructions at the rate of a thousand instructions per second, which is 3 600 000 
instructions per hour. These instructions can be emulated with faults inserted in the 
system, so that  the behavior caused by faults may be analyzed. 

17 



4.4. HARDWARE FAULT MODELING AND INJECTION 
Hardware fault modeling and injection experiments have been used in many 

places. They provide research results which are pertinent to the primary validation 
stage to ensure tha t  reliability predictions are valid. 

4:s. IAPSAIAND II 

valid a t  ion activities. 
The IAPSA [14] [15] [16] (171 [18] program is presently supporting research in pre- 

4.6. LIGHTNING-INDUCED TRANSIENT EFFECTS - UPSET 
Research provides information and experience about the effects of lightning 

strikes on fly-by-wire systems. Measurements of lightning effects are extremely impor- 
tant,  both during the design stage and for evaluation during the post validation stage. 

4.7. FAULT-TOLERANT SOFTWARE 
Fault-tolerant software research [19] [20) has been emphasized recently by NASA. 

The development of the N-version software coincidence errors model yielded much 
additional insight into the reliability gain of such software or any N-version architec- 
ture. This research provides knowledge during the prevalidation stage, which greatly 
assists in determining which architectures should be chosen. 

4.8. FAULT-TOLERANT MULTIPROCESSORS, EXPERIMENTAL SYS- 
TEMS 

SIFT[11], FTMP[21], and FTP[22] are complete systems, developed under contract 
to NASA-LaRC and are now being validated at AIRLAB. Their validation will provide 
practical knowledge and experience which are applicable to all phases of validation. 
Validation of the clock synchronization algorithm was done for SIFT. This provided a 
much better understanding of the interrelationships between the system operational 
behavior and the abstraction of algorithms which show interactive consistency, often 
called the Byzantine generals’ problem. 

4.9. SOFTWARE ERROR STUDIES 
Research and experimentatjon [23] [24] [25] in the measurement of the operational 

reliability of software provides information about how to post-validate software. The 
software error experiments, which are still being conducted, provide information about 
the measurement of the operational reliability of software. These experiments also 
provide information about how to test software, how to determine that it’s ready to 
ship, and how one is going to most efficiently determine tha t  software should or should 
not be changed during system operation. 

18 



4.10. VALIDATION OF CLOCK SYNCHRONIZATION 
The research[26] which culminated in the validation of SIFT’S clock synchroniza- 

tion algorithm provided understanding of system operational behavior and thus sup- 
ports post-validation activities. 

5. IMPORTANT IDEAS IN DESIGN FOR VALIDATION 
While current validation research has yielded many important results, we con- 

sidered it profitable to examine some of the important principles embodied in current 
work to help determine what also needs to be done. The ideas that  were discussed fell 
into five categories: 

Formal Classification of Models 
Design Duality 
Complementary Com p le t eness 
Integration of Design and Validation Tools 
Planned, Traceable, Audited Life Cycle Validation 

5.1. FORMAL CLASSIFICATION OF MODELS 
The process of designing complex systems is, as i t  has always been, the implicit or 

semi-implicit process of creating models of the system. Without classification and unifi- 
cation, it becomes very difficult to determine either that  the results achieved are satis- 
factory or that  the reasons for stopping one stage of the modeling and proceeding with 
the next are met. 

A practical example of the importance of models is given by coding theory. There 
were many codes known before Hamming’s work and some of them were extremely 
complex; however, they were all determined in a hit-or-miss fashion by intuition. How 
good they were was never explicitly determined except in specific cases. Hamming’s 
achievement was to determine the so-called Hamming measure or Hamming distance, 
which is based on a mathematical distance property. Using this measure, i t  was easy 
to predict and evaluate codes which were designed for error detection or for error 
correction. 

5.1.1. AXIOMATIC MODELS 
Axiomatic models satisfy and use axioms from mathematical theory and are based 

on the application of logic (proof) from general principles to specific conclusions. 
Examples of axiomatic models are the Markov models of system reliability and the first 
order logic models of programs. 
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5.1.2. EMPIRICAL MODELS 
Empirical models demonstrate properties based on observations. A system and its 

properties are normally so complicated that  either they do not satisfy a consistent set  
of mathematical principles, or, if  they do, the set is so complicated that it cannot be 
used to derive further properties. 

In these situations, i t  is easier to construct an empirical model. Examples of this 
type of model are hardware descriptions, particularly the hardware descriptions used 
in the simulation of systems. 
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5.2. DESIGN DUALITY 

SYSTEM MODEL 

.Function Sequence 
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State Transition 
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Structure Correctness 
Testing - I 

VO Value 
Testing 

Figure 8. An Example of Design Duality 
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Behavioral models are frequently used to demonstrate system properties. These 
models are called black-box models because the only things considered are the func- 
tions performed, the inputs, and the outputs. Therefore, they are tested, and their 
worth is determined, only from sets of their inputs and the resulting outputs. 

A second type of model is the object-oriented, or structural model, which 
emphasizes the manipulation of objects during each step in the model’s process. This 
model is called white box. 

Other viewpoints, such as geometric mddels, showing the details of circuit design, 
are also used. Using several models for each level is important. 

The example of design duality in Figure 8 is derived from one of Howden’s 
papers[27]. Suppose we are given a specification of a system which we wish to model. 
The system is not yet constructed, so all we have is a set of specifications. This model 
can be described in several ways. 

The first is in terms of a behavioral model. This behavioral model is described a s  
a sequence of functions. Each of these functions operates upon a set of inputs and 
finally produces a set of output values which can be tested for correctness. 

Another model is the state machine model, an object-oriented model. We begin 
with a state of the system which includes the data. We then determine a set of state 
transitions; this set is intended to manipulate the data  into the various forms that  we 
want. The set is tested by determining tha t  the da t a  structure is transformed 
correctly and in proper sequence. 

Now tha t  we have two tested models of the same system, the next step is to show 
they are equivalent; for every input pattern for either of the models, both models must 
give the same output. In other words, while they give two very different views of the 
same system, they must be shown to be compatible. 
. Finally, of course, there is the third view of the system, which is the way the sys- 
tem will actually be implemented. This view must also be shown to be equivalent to 
these models. 

The approach of design duality and complementary completeness is to develop a 
sufficient number of models so tha t  all views of the system have been considered and 
have been shown to be consistent. , 
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Figure 9. Application of Design Duality and Complementary Completeness 
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5.3. COMPLEMENTARY COMPLETENESS 
If many different models.are built using the idea of design duality so that the sys- 

tem at a particular level is considered from many points of view, then complementary 
completeness says that  all of these different points of view must be shown to comple- 
ment each other. As they complement each other, then designers are more certain 
that  every facet of the design has been considered and validated. Clearly, consistency 
must be shown between each of the hierarchical levels in the design so that  the whole 
system is integrated and its functions can be audited and traced. 

The demonstration of complementary completeness is key to the appropriate use 
of hierarchical levels of abstraction. During each stage of the system life-cycle, a set of 
axiomatic models and empirical models are constructed. 

- 

5.3.1. PREVALIDATIO N 
At the pre-validation stage we have axiomatic models (e.g., proofs or Markov 

models of system attributes), and empirical models or demonstrations (e.g., a simula- 
tion model). The simulation of the system shows the details of the error-handling pro- 
cess, if a fault occurs. The Markov model uses an  abstract process of error handling if 
a fault occurs. The Markov model is evaluated using mathematics to show the 
predicted reliabifity. In order to show tha t  these two models have complementary 
completeness, i t  must be proven tha t  each one of the empirical models is a proper case 
analysis of an  example of the axiomatic model. If any of the empirical models demon- 
strate behavior which is contrary to the assumed action in the axiomatic model, then 
one or both must be changed until they agree. 

~ 5.3.2. PRIMARYVALIDATION 
During primary validation, the axiomatic models are used for proofs, as well as for 

more detailed analysis. Also, they are changed because more information is available. 
The same process can be performed for the empirical models. At  this stage, not only 
do we have demonstrations, but also experiments. Now the axiomatic models at these 
two levels can be proved consistent since they are both mathematical and satisfy a set 
of axioms. This proof of consistency must be shown. The empirical models are also 
supposed to be descriptions of the same system. A mapping between the descriptions 
must demonstrate that  the new and more complicated empirical models are simply an 
improvement and an extension of the previous models and demonstrations. 

5.3.3. PO ST-VALID AT10 N 
Finally, at the post-validation stage, the axiomatic models are used to analyze the 

measurements which are obtained from the physical system. These measurements 
must be proven consistent with the analysis done using mathematical models in the 
validation stage, which is also consistent with the predictions which were made in the 
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pre-validation stage: Measurements must be taken from the physical system and must 
be shown to correspond to the proper predictions. At any stage it must be possible to 
audit the system properties and attributes, to trace these properties to their initiation, 
show the decisions which cause them, determine how they are related to the system 
specifications and requirements, and show that  they have been properly validated. 

5.4. INTEGRATION OF DESIGN AND VALIDATION TOOLS 
Many of the tools currently used for system design can be used for validation with 

only small changes. For example, tools used for test generation first generate a test, 
then use a simulation procedure to show that the test not only tests the desired fault, 
but determines how many other patterns will detect the same fault and, conversely, 
how many faults will be detected by this single test pattern. The latter is of extreme 
interest in trying to validate the system. A test can be extended to look at the error- 
detection circuits to  determine which one of the faults will be detected by those cir- 
cuits, given a particular pattern. This is but one example of the possible integration of 
design and validation tools. 

. 

5.5. PLANNED, TRACEABLE, AUDITED LIFE CYCLE VALIDATION 
We must be able, at any stage, to audit the system properties and attributes, to 

trace these properties to their initiation, show the design decisions which cause them, 
determine how they are related to their specifications and requirements, and show that 
they have been properly validated. 

6. FUTURE RESEARCH NEEDS 
The panel has determined eleven research areas which it believes are necessary. 

These must be implemented and developed in order to achieve the goal of system vali- 
dation. They are complementary to the ideas of the past and current research in sys- 
tem validation at NASA-LaRC. 

These areas fall into three main categories: 
0 theory 

design methods 
0 experiments 

Theoretical foundations need to  be devised to support the development and use of the 
new ideas. Design aspects need to be addressed and developed in order to  prepare 
these ideas for experiments and test them against reality. Experiments need to be 
undertaken to  test these ideas and to  gain knowledge not only about the new ideas, 
but  about the entire problem of system validation. 

New methods of designing systems, so tha t  they can be properly validated, are 
urgently needed. Systems are built from interactive collections of concepts and ideas. 
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These concepts and ideas should be clearly stated in their requirements. However, as 
the system is implemented, there is a conflict of requirements - for example, between 
performance and reliability. Many of the ideas which were clearly stated in the 
requirements are not easily seen in the implemented system. They have become 
anonymous. These concepts do not correspond to  individual variables or signals from 
modules, but rather to a combination of them, many of which do not occur at the 
same time. Other ideas will be identifiable, but they will be integrated in such a way 
that they are not easily available for inspection. The designs must identify all the con- 
cepts and ideas used and result in the construction of the system which allows their 
monitoring for the purposes of evaluation and validation. 

A practical example of this kind of functional integrity is what IBM calls a proces- 
sor controller, and what other companies call monitoring processors or maintenance 
processors. These processors constantly monitor the system status, including electrical 
and thermal properties, and they handle error recovery. When an error signal is 
activated, the local state must be gathered and put into the monitoring device. When 
recovery succeeds, the main system proceeds. The processor controller then analyzes 
the local state, determines if this error is beconling recurrent (so that the system must 
be fixed), and locates which of the field replaceable units should be replaced. 

As another example, consider the IBM research system, RP3,[28]. (This reference 
is the first in a series of related papers‘ presented af this conference.) This research 
prototype wilf have 25G processors operating in parallel on the same problem. Several 
proposals have been made to coordinate $he parallel action of such processors, ranging 
from message’ passing between processois~ warking on relatively independent parts of 
the problem (such as on the cosmic cube developed for physical simulations at Cal 
Tech) to the UL,TRA machine,’which uses a large, shared global memory. The RP3 
has been designed so that  it can operate in the memory mode of either the ULTRA or 
the Cosmic Cubevor in a combin&icm:af the t w o  modes. In addition, there is special 
hardware which’can monitor not only khe occurrence of error signals, as discussed pre- 
viously, but also the progress of .the program, and determine various quantities which 
normally would not be easily available. 

6.1. THEORY 
* J - / - L .  

6.1.1. SYSTEM SPEC~FICATION ‘ As stat‘ed earlier, specification methods are formal methods, languages, or nota- 
tions that  describe and represent the behavior of a system or subsystem i n  a hierarchi- 
cal fashion. The purpose of a specification method is to provide an aiialyzable model 
of‘the systein; 4 .  

Identification of critical properties of the system components are needed both to 
support modeling the intended behavior of the system and to provide criteria or condi- 
tions that can be validated by analysis. While recognized as  serious, this is a major 
unsolved problem in computer science. Good specification methods do not exist. They 

. .  
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should fully identify the assumptions and critical properties of the system and be 
mathematically sound and easy to use. The research envisioned here is not the 
development of a new, comprehensive model. Rather, it is to consider the specification 
methods which now exist, 'consider formal and informal extensions of these models, and 
evaluate the appropriateness of competing methods. The result should be a set of' 
methods which are useful and mathematically valid. An important feature of specifi- 
cation methods is that they must facilitate the use of automatic tools and techniques 
to  aid in building and verifying models. To be useful for realistic systems, the tech- 
niques must permit hierarchical specifications and multilingual specifications, because 
the language which is good for designing a computer circuit is not one which is good 
for microprogramming, nor is it good for expressing more abstract algorithms. 

6.1.2. IDENTIFICATION AND ANALYSIS OF SYSTEM PROPERTIES 
Large complex systems contain . many interacting and integrated subsystems, 

modules, data, and functional objects. To develop methods for formally building 
models of systems, i t  is necessary to  be able to identify the system properties and attri- 
butes which must be examined and then to determine the hypothesis and mathematics 
which will clearly express these and which will permit a recursive definition. In model 
building, one of the basic problems, which is not well solved at all, is specifying com- 
ponents with dependent properties. For example, it is well known that  if a component 
is connected to the rest of the system by a bus, then if the bus fails, that  component is 
also unusable by the system. Its reliability and availability is dependent upon the reli- 
ability properties of the bus. Techniques must be developed to determine the correct- 
ness of the solutions given by the models. For design duality, different aspects of tlie 
same system are defined. How are we going to show tha t  the results from these 
aspects are properly related? One way is by saying that  the results are related in the 
same way tha t  the different functional properties of the system are related. Finally, 
these models must be extended so that they are applicable to large and complicated 
systems . 

6.1.3. DETERMINATION AND QUANTIFICATION OF INTERACTIONS 
BETWEEN COMPLEMENTARY TECHNIQUES 

The main reason for doing this is to show that  the process of validation is coni- 
plete and that  nothing has  been missed. Secondly, it is to avoid the wastefulness of 
performing a set of validation activities which lead t o  unrelated and confusing results. 
I t  is impossible to get quantitative measures of validation if activities yield unrelated 
and confusing results. Basic to  this work is the realization that  attributes of tlie dif- 
ferent s p e c t s  of the same system are related in a way similar to the relationship 
between these aspects. 
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6.1.4. VALIDATING HIERARCHICAL LEVI3LS 
The only way io deal with the complexity of a large system is to divide it into 

hierarchical levels. Work has been done on this; however, it is still a major unsolved 
problem. The past work has implicitly assumed a static system. Little attention has 
been given to the validation of complex software systems as a set of layers whose 
interaction is dynamic. 

While some work has been done in protocol validation, this often depends on tem- 
poral logic to take care of its dynamic action over a set of time intervals. This work 
has not been extended to other aspects of a complete system. The use of temporal 
logic has been extremely difficult, and various improvements which will simplify it 
have been proposed. Thus, we can say that validating the hierarchical levels of the 
system is an unsolved problem. 

~ 

I 

6.1.5. DEVISING EXPERIMENTAL METHODS 
Simply putting together a system and running various demonstrations on it is not 

a satisfactory way to prove that the system has the correct properties. New theoretical 
ideas will not be very useful unless their validity can be shown, and the best ones 
determined by experiments. 

It is necessary to devise methods based upon the standard paradigm of experimen- 
tal physics. This paradigm has seldom been used for computer science. To use this 
paradigm, we must first state the hypothesis to be tested. Secondly, we must deter- 
mine how the results will be measured, and how they will determine if the attributes of 
this hypothesis are true. Then, we must plan the experiment, show that the proposed 
results can be analyzed and collected, and do the experiment. As the experiment is 
performed, we must collect and analyze the results. This analysis will confirm or deny 
the hypothesis. 

6.2. DESIGN METHODS 

I 6.2.1. STRUCTURING AND PARTITIONING SYSTEMS 
As indicated by the earlier examples, methods for .structuring and partitioning 

systems for validation is of primary importance and difficulty. Partitioning has always 
been done, but doing i t  well is still an unsolved problem. There is very little data to 
indicate that any of the proposed solutions are good or valid. 

6.2.2. DESIGN FOR TESTABILITY AND VERIFIABILITY 
The major problem of design for testability and verifiability is still an important 

unsolved problem. One of the advances which needs to be made is the one, mentioned 
earlier, of using the standard recursive ideas for definition. As an example, consider the 
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6.3.3. VALIDATION TOOLS 
Finally, to conduct experiments in system validation, we must have easy-to-use 

validation tools and methods. These do not exist, except perhaps as a proprietary col- 
lection in some large companies. Development of this set of tools should begin with 
the acquisition of current state-of-the-art design, testing, modeling, simulation, and 
analysis tools and continue with the acquisition and incorporation of new tools. 

These new tools will be determined by the results of the validation research and 
the results of using the previous set of tools. Tools should be integrated by a data 
base so that  experimental results can be recorded, and information audited and traced. 

Much of the work which has been done on validation has been done by human 
beings without the necessary validation tools. For example, inserting faults into the 
system is slow, arduous, and extremely complicated, and then analyzing the results of 
such an experiment is difficult. Proper simulation techniques can show which tes ts  are 
necessary and which tests are dependent, so that the use of a few tests will be far more 
profit ab  le. 
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Figure 10. Research Needs in the Validation Space 
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If the identified tasks are mapped into the validation space (see Figure IO) ,  it is 
apparent that  most pf the important ones are abstract; they apply to systems and sub- 
systems. Detail design is discussed only when talking about design detail. 

If the ideas are systematically carried out, then instead of small, separated areas, 
there would be a consistently large area with continuous ideas so that instead of sim- 
ply saying, “We would like to jump from one area to another,” it could be said, 
“These ideas lead coherently to the one we wish from the one that we have.” 

A proposed schedule for research in design for validation has been drawn up and 
each of the eleven research activities has been considered, but not in detail because the 
panel did not have time to do this, but primarily in terms of the expected results of 
such a study and when you could expect the results to be available. We divided the 
times at which the results could be available into three categories: near-term, which 
are two years or less; medium, which are two  to five years (which means, of course, 
that  less is known about them, but we have some idea on how to proceed); and long- 
term, which are greater than five years. 

The research activities listed are known now. Yet, many can be considered only 
in the long term. Some of these activities will probably be changed so much that  they 

1. 
2. 
3. 

4. 
5. 
6. 

7. 
8. 

9. 
10. 
11. 

I will not be easily recognized. 

Research Activity 
System Specification 
Identification and Analysis of System Properties 
Determination and Quantification of Interactions 
be tween Complementary Techniques 
Methods for Validating Hierarchical Levels 
Devising New Experimental Methods 
Methods for Structuring and Partitioning 
Systems for Validation 
Design for Testability/Verifiability 
System Architectures Designed 
for Validated Dependability 
Define Validation Goals for Systems 
Perform Experiments 
Develop and Integrate Validation Tools 

De liver ab les 
Near, Long 
Near, Medium 

Medium, Long 
Near, Medium, Long 
Near, Medium 

Near, Medium 
Medium 

Near, Medium, Long 
Near, Medium 
Near, Medium, Long 
Near, Medium, Long 

Key: Near: < 2 years 
Medium: 2-5 years . 
Long: > 5 years 

Figure 11. A Proposed Research Schedule 
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7.1. SYSTEM SPECIFICATION 
The first reseakh activity is system specification. We believe that the best idea 

for NASA is to get some results in the near term. This means surveying what has  been 
done, comparing the answers, and making minor modifications to develop a coherent 
method of doing system specification. 

Any other work in system specification should have its deliverables in the long 
term. There is so little known now and there are so many other people working in the 
field that  it does not appear to be justified for NASA-LaRC to have activity in this 
field, except on a very long-term basis for the occasional areas that are deemed critical. 

7.2. IDENTIFICATION AND ANALYSIS OF SYSTEM PROPERTIES 
The second activity is identification and analysis of system properties. This must 

be started immediately. Until some good methods of identification and analysis are 
known, much of the work on system validation cannot be done. However, this problem 
does not appear to be too difficult. We can get some results not only in the very near 
future but  in the medium range. By that  time, some specified systems should be built 
and analyzed using coherent'plans, we can learn a great deal more about the identifi- 
cation and analysis, and the problem will undoubtedly have changed. 

7.3. DETERMINATION OF INTERACTIONS 
The third activity is the determination and quantification of interaction between 

complementary techniques. This research can begin only after more is known about 
the identification and analysis of system properties. Therefore, we cannot expect 

. results in the very near term. However, we must get results as soon as possible to have 
them available in the medium term. This task is one of the most important problems, 
and one of the most complicated. Results will still be necessary after five years. 

7.4. METHODS FOR VALIDATING HIERARCHICAL LEVELS 
Results are needed now. NASA needs to collect information (particularly from 

the improvements in SIFT[11] and the improvements in GYPSY[30] and determine 
how they can be used. Once this information is collected, more results wili be neces- 
sary in the medium range to  be useful for the FTP[22] system. It  is not likely that the 
method of using hierarchical levels will .be solved within five years. 

7.5. DEVISING NEW EXPERIMENTAL METHODS 

experiments in computer. science is weak. 
Devising new experimental methods must be started immediately. The status of 
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7.6. STRUCTURING AND PARTITIONING 
The next proposed activity is studying methods for structuring and partitioning 

systems for validation. Once again, near-term projects will consist more of learning 
what others are doing, and deciding how these design methods can be modified for 
validation. Again, the long-term problem is vague. 

I 

7.7. DESIGNING FOR TESTABILITY AND VERIFICATION 
This is a current field of great interest. As mentioned earlier, there are at least 

two workshops in the area of design for test. There is a major symposium on design 
for testability every year, and there are papers given on designing for testability and 
verifiability at the design automation conference and at the fault-tolerant computing 
symposium. NASA-LaRC should monitor these activities and, after the first flush of 
papers and experiments have been described, codify them and make these results 
coherent in the medium term. 

7.8. SYSTEM ARCHITECTURES DESIGNED FOR VALIDATED 
DEPENDABILITY 
In the near range we need to set up the research data collection system, determine 

what we would like to monitor, and s tar t  monitoring it. I n  the medium range, we have 
to  decide how we are going to do the classification and begin collecting data. In addi- 
tion to collecting data  and analyzing it,  there probably will be a need (unique to 
NASA) for advanced system architectures for very reliable systems which operate in 
real time. Work done previously for NASA-LaRC has been extremely fruitful and is 
being copied throughout the world. In the long term, new architectures will probably 
be required. 

7.9. DEFINING VALIDATION GOALS FOR SYSTEMS 
We do not know enough about how complicated non-sequential systems perform. 

Experiments are extremely important; to conduct a good experiment we will have to  
define the validation goals. The methods we use for simple serial systems will not 
work for real-time parallel systems. Some of the problems which come up are the 
rescheduling of operations; research has been supported by NASA with the work of 
Professor Kang Shin (311 [32) [33] [34] at the University of Michigan. This work should 
be extended. 

7.10. EXPERIMENTS 
Validation of reliable systems must be recognized as an experimental branch of' 

computer science. It is imperative that  a suite of automated tools be developed and 
integrated so that .the results of experiments can be easily gathered and it can be 
determined if progress is being made. 
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8. CONCLUSION 
The fundamental conciusion of the panel is that  there is a crucial need for system 

validation to become fully integrated into the product life-cycle, from initial specifica- 
tion of system requirements to the operation and maintenance phases of the life-cycle. 
This conclusion translates directly to the use of formal specification methods, 
automated aides for the creation and maintenance of specifications, and extensive 
data  base systems that can help capture system performance information completely 
through to the end of its operational lifetime. At each of the intermediate stages of the 
system life-cycle, corresponding validation activities have been identified, all of which 
are deemed essential if the ultrahigh levels of system dependability required for critical 
missions are to be achieved. The panel was  charged with developing a research plan 
for validating fault-tolerant digital systems used in flight-critical situations. It is 
expected that  this plan will help the NASA Langley Research Center to advance the 
goal of attaining and accurately estimating the reliability of systems built as part of its 
AIRLAB research project and as components of future flight-critical and life-critical 
environments. 

Several working groups on validation and fault tolerance have been convened by 
NASA- LaRC, beginning in March 1979, and have contributed many important ideas. 
This panel first met in April 1986 and held its final meeting on August 1, 1983; it 
included experts from the commercial computer industry, the aerospace industry, and 
members of the NASA Langley research staff. 

The panel examined recent research reports, the experience of NASA-LaFtC with 
AIRLAB, and the industry experience and current research findings of members of the 
panel. 

The recommendations of the panel are expressed in a five-year phased develop- 
ment plan consisting of eleven major research areas, as summarized in Figure 11. Each 
of the research areas is detailed in the body of the report, along with the rationale for 
its development. The activity areas are categorized within three implementation time 
frames: immediate to two years, two to five years, and beyond five years. 

The panel found that no satisfactory integrated validation approach exists that  is 
likely to meet NASA’s mission needs in the near future. While i t  is believed that  most 
major validation research needs have been identified, many of the problem areas miist 
still be categorized in the domain of basic research. These include: 

0 formal classification of models 
0 application of design duality 
0 application of complementary completeness 
0 integration of design and validation tools 
0 planned, traceable, audited life-cycle validation 

Further, many of the needs perceived for NASA programs are unique and are not 
likely to be completely addressed by iiniversity or industry researchers in the near 
term uiiless specific opportunities are provided to  do so. 
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I SUMMARY 

As part of its ongoing validation research programs, NASA Langley Research 
Center formed a panel to  plan future research directions. The panel was charged with 
developing a research plan for validating fault-tolerant digital systems used in flight- 
critical situations. The panel was comprised of the following members: 

0 William C. Carter, Chair 
0 

0 

0 

0 

Janet R. Dunham, Vice-chair - Research Triangle Institute 
William E. Howden, Dept. of Electrical Engineering and 

Jean-Claude Laprie - LAAS-CNRS, Toulousse, France 
Brian Smith - Argonne National Laboratory 

Computer Science - University of California 

0 Thomas Williams - IBM Corporation, General Technology Div. 

Beginning in March 1979, NASA-LaRC convened several working groups on fault- 
tolerance; they have contributed many important ideas that  were precursors to those 
explored by the current panel. The current panel first met in April 1986 and held its 
final meeting on August 1, 1986; meeting participants included experts from the com- 
mercial computer industry, the aerospace industry, and members of the NASA-LaRC 
research staff. 

The panel examined current research: the experience of NASA-LaRC with AIR- 
LAB, computer industry experience, research findings of members of the panel, and 
the experience of the aerospace industry. 

The recommendations of the panel are expressed in a five-year, phased develop- 
ment plan consisting of eleven major research areas. Each of the research areas is 
detailed in the body of this report, along with the rationale for its development. 

This report is a synthesis by the authors of the panel's conclusions. Additional 
information on the topics addressed by the panel can be found in the list of references 
a t  the end of this report. 

We gratefully acknowledge the editing assistance provided by Dr. Brian Smith 
and the valuable contributions made to the panel's investigations and discussions by 
the following participants: 

0 James Clary - Research Triangle Institute 
0 Bill Dove - NASA Langley Research Center 
0 Brian Lupton - NASA Langley Research Center 
0 John Pierce - Research Triangle Institute 
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