86 research outputs found

    Timing as a sexually selected trait: the right mate at the right moment

    Get PDF
    Sexual selection favours the expression of traits in one sex that attract members of the opposite sex for mating. The nature of sexually selected traits such as vocalization, colour and ornamentation, their fitness benefits as well as their costs have received ample attention in field and laboratory studies. However, sexually selected traits may not always be expressed: coloration and ornaments often follow a seasonal pattern and behaviours may be displayed only at specific times of the day. Despite the widely recognized differences in the daily and seasonal timing of traits and their consequences for reproductive success, the actions of sexual selection on the temporal organization of traits has received only scant attention. Drawing on selected examples from bird and mammal studies, here we summarize the current evidence for the daily and seasonal timing of traits. We highlight that molecular advances in chronobiology have opened exciting new opportunities for identifying the genetic targets that sexual selection may act on to shape the timing of trait expression. Furthermore, known genetic links between daily and seasonal timing mechanisms lead to the hypothesis that selection on one timescale may simultaneously also affect the other. We emphasize that studies on the timing of sexual displays of both males and females from wild populations will be invaluable for understanding the nature of sexual selection and its potential to act on differences within and between the sexes in timing. Molecular approaches will be important for pinpointing genetic components of biological rhythms that are targeted by sexual selection, and to clarify whether these represent core or peripheral components of endogenous clocks. Finally, we call for a renewed integration of the fields of evolution, behavioural ecology and chronobiology to tackle the exciting question of how sexual selection contributes to the evolution of biological clocks.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'

    Modeling Genomes to Phenomes to Populations in a Changing Climate: The Need for Collaborative Networks

    Get PDF
    Condensed Abstract Climate is changing globally and its impacts can arise at different levels of biological organization; yet, cross-level consequences of climate change are still poorly understood. Designing effective environmental management and adaptation plans requires implementation of mechanistic models that span the biological hierarchy. Because biological systems are inherently complex and dynamic in nature, dealing with complexities efficiently necessitates simplification of systems or approximation of relevant processes, but there is little consensus on mathematical approaches to scale from genes to populations. Here we present an effort that aims to bring together groups that often do not interact, but that are essential to illuminating the complexities of life: empirical scientists and mathematical modelers, spanning levels of biological organization from genomes to organisms to populations. Through interplay between theory, models, and data, we aim to facilitate the generation of a new synthesis and a conceptual framework for biology across levels

    Multiple steroid and thyroid hormones detected in baleen from eight whale species

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Physiology 5 (2017): cox061, doi:10.1093/conphys/cox061.Recent studies have demonstrated that some hormones are present in baleen powder from bowhead (Balaena mysticetus) and North Atlantic right (Eubalaena glacialis) whales. To test the potential generalizability of this technique for studies of stress and reproduction in large whales, we sought to determine whether all major classes of steroid and thyroid hormones are detectable in baleen, and whether these hormones are detectable in other mysticetes. Powdered baleen samples were recovered from single specimens of North Atlantic right, bowhead, blue (Balaenoptera [B.]musculus), sei (B. borealis), minke (B. acutorostrata), fin (B. physalus), humpback (Megaptera novaeangliae) and gray (Eschrichtius robustus) whales. Hormones were extracted with a methanol vortex method, after which we tested all species with commercial enzyme immunoassays (EIAs, Arbor Assays) for progesterone, testosterone, 17β-estradiol, cortisol, corticosterone, aldosterone, thyroxine and tri-iodothyronine, representing a wide array of steroid and thyroid hormones of interest for whale physiology research. In total, 64 parallelism tests (8 species × 8 hormones) were evaluated to verify good binding affinity of the assay antibodies to hormones in baleen. We also tested assay accuracy, although available sample volume limited this test to progesterone, testosterone and cortisol. All tested hormones were detectable in baleen powder of all species, and all assays passed parallelism and accuracy tests. Although only single individuals were tested, the consistent detectability of all hormones in all species indicates that baleen hormone analysis is likely applicable to a broad range of mysticetes, and that the EIA kits tested here perform well with baleen extract. Quantification of hormones in baleen may be a suitable technique with which to explore questions that have historically been difficult to address in large whales, including pregnancy and inter-calving interval, age of sexual maturation, timing and duration of seasonal reproductive cycles, adrenal physiology and metabolic rate.This work was supported by (1) the Center for Bioengineering Innovation at Northern Arizona University and (2) the New England Aquarium

    現代日本語における敬語の命令形

    Get PDF
    千葉大学社会文化科学研究科研究プロジェクト報告書第123集『語彙と文法の相関-比較・対照研究の視点から』所

    Assessment of a non-invasive approach to pregnancy diagnosis in gray whales through drone-based photogrammetry and faecal hormone analysis

    Get PDF
    This project was supported by the NOAA National Marine Fisheries Service Office of Science and Technology, the Office of Naval Research Marine Mammals and Biology Program (no. N00014-20-1-2760), the Oregon State University Marine Mammal Institute and Oregon Sea Grant.Knowledge of baleen whales’ reproductive physiology is limited and requires long-term individual-based studies and innovative tools. We used 6 years of individual-level data on the Pacific Coast Feeding Group gray whales to evaluate the utility of faecal progesterone immunoassays and drone-based photogrammetry for pregnancy diagnosis. We explored the variability in faecal progesterone metabolites and body morphology relative to observed reproductive status and estimated the pregnancy probability for mature females of unknown reproductive status using normal mixture models. Individual females had higher faecal progesterone concentrations when pregnant than when presumed nonpregnant. Yet, at the population level, high overlap and variability in progesterone metabolite concentrations occurred between pregnant and non-pregnant groups, limiting this metric for accurate pregnancy diagnosis in gray whales. Alternatively, body width at 50% of the total body length (W50) correctly discriminated pregnant from non-pregnant females at individual and population levels, with high accuracy. Application of the model using W50 metric to mature females of unknown pregnancy status identified eight additional pregnancies with high confidence. Our findings highlight the utility of drone-based photogrammetry to non-invasively diagnose pregnancy in this group of gray whales, and the potential for improved data on reproductive rates for population management of baleen whales generally.Publisher PDFPeer reviewe

    SEASONAL VARIATION OF NUTRITIONAL HORMONES IN CAPTIVE FEMALE MOOSE

    Get PDF
    The health status of animals may be inferred from the patterns of hormonal concentrations and other chemical characteristics in blood samples. Baseline endocrine data representing the nutritional and reproductive condition of moose are currently unknown. In this study, we examined the seasonal patterns of 3 nutritional hormones (leptin, ghrelin, insulin-like growth factor-1) in 3 captive, non-pregnant female moose (Alces alces) fed a maintenance diet from November to August. Plasma concentrations for leptin, ghrelin, and IGF-1 averaged 1.36 ± 0.81 ng/mL, 0.229 ± 0.110 ng/mL, and 114.0 ± 30.5 ng/mL, respectively; only ghrelin displayed a seasonal change. Plasma ghrelin concentration was significantly elevated (P < 0.001) during winter months suggesting it may be sensitive to seasonal changes and indicative of nutritional status

    Multi-year patterns in testosterone, cortisol and corticosterone in baleen from adult males of three whale species

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Physiology 6 (2018): coy049, doi:10.1093/conphys/coy049.Male baleen whales have long been suspected to have annual cycles in testosterone, but due to difficulty in collecting endocrine samples, little direct evidence exists to confirm this hypothesis. Potential influences of stress or adrenal stress hormones (cortisol, corticosterone) on male reproduction have also been difficult to study. Baleen has recently been shown to accumulate steroid hormones during growth, such that a single baleen plate contains a continuous, multi-year retrospective record of the whale’s endocrine history. As a preliminary investigation into potential testosterone cyclicity in male whales and influences of stress, we determined patterns in immunoreactive testosterone, two glucocorticoids (cortisol and corticosterone), and stable-isotope (SI) ratios, across the full length of baleen plates from a bowhead whale (Balaena mysticetus), a North Atlantic right whale (Eubalaena glacialis) and a blue whale (Balaenoptera musculus), all adult males. Baleen was subsampled at 2 cm (bowhead, right) or 1 cm (blue) intervals and hormones were extracted from baleen powder with methanol, followed by quantification of all three hormones using enzyme immunoassays validated for baleen extract of these species. Baleen of all three males contained regularly spaced peaks in testosterone content, with number and spacing of testosterone peaks corresponding well to SI data and to species-specific estimates of annual baleen growth rate. Cortisol and corticosterone exhibited some peaks that co-occurred with testosterone peaks, while other glucocorticoid peaks occurred independent of testosterone peaks. The right whale had unusually high glucocorticoids during a period with a known entanglement in fishing gear and a possible disease episode; in the subsequent year, testosterone was unusually low. Further study of baleen testosterone patterns in male whales could help clarify conservation- and management-related questions such as age of sexual maturity, location and season of breeding, and the potential effect of anthropogenic and natural stressors on male testosterone cycles.This work was supported by (1) the Arizona Board of Regents Technology Research Initiative Fund; (2) the Center for Bioengineering Innovation at Northern Arizona University; (3) the Greenland Institute of Natural Resources; (4) the Woods Hole Oceanographic Institution Ocean Life Institute and (5) Fisheries and Ocean Canada’s (DFO) Priorities and Partnership Strategic Initiatives Fund and Oceans Protection Plan
    corecore