1,171 research outputs found

    \epsilon-regularity for systems involving non-local, antisymmetric operators

    Full text link
    We prove an epsilon-regularity theorem for critical and super-critical systems with a non-local antisymmetric operator on the right-hand side. These systems contain as special cases, Euler-Lagrange equations of conformally invariant variational functionals as Rivi\`ere treated them, and also Euler-Lagrange equations of fractional harmonic maps introduced by Da Lio-Rivi\`ere. In particular, the arguments presented here give new and uniform proofs of the regularity results by Rivi\`ere, Rivi\`ere-Struwe, Da-Lio-Rivi\`ere, and also the integrability results by Sharp-Topping and Sharp, not discriminating between the classical local, and the non-local situations

    Toll-like receptor-4 signaling pathway in aorta aging and diseases: "its double nature"

    Get PDF
    Recent advances in the field of innate immunity have revealed a complex role of innate immune signaling pathways in both tissue homeostasis and disease. Among them, the Toll-like receptor 4 (TLR-4) pathways has been linked to various pathophysiological conditions, such as cardiovascular diseases (CVDs). This has been interrogated by developing multiple laboratory tools that have shown in animal models and clinical conditions, the involvement of the TLR-4 signaling pathway in the pathophysiology of different CVDs, such as atherosclerosis, ischemic heart disease, heart failure, ischemia-reperfusion injury and aorta aneurysm. Among these, aorta aneurysm, a very complex pathological condition with uncertain etiology and fatal complications (i.e. dissection and rupture), has been associated with the occurrence of high risk cardiovascular conditions, including thrombosis and embolism. In this review, we discuss the possible role of TLR-4signaling pathway in the development of aorta aneurysm, considering the emerging evidence from ongoing investigations. Our message is that emphasizing the role of TLR-4signaling pathway in aorta aneurysm may serve as a starting point for future studies, leading to a better understanding of the pathophysiological basis and perhaps the effective treatment of this difficult human disease

    Manufacturing and testing of 3D-printed polymer isogrid lattice cylindrical shell structures

    Get PDF
    This article focuses on the use of fused deposition modeling (FDM) technology to manufacture and test polymer isogrid lattice cylindrical shell (LCS) structures with equilateral triangular unit-cells using non-professional and conventional 3D printing software and hardware. A parametric and automated 3D model for these structures is created in SolidWorks using the Visual Basic (VBA) programming language. Different configurations of the isogrid LCS structure are modeled, manufactured, and tested in order to determine the compressive structural strength and stiffness, as well as to investigate structural instability. The experimental results are used to deduce the inherent limitations of 3D printing, including the inhomogeneities, imperfections, and non-isotropic nature of FDM, as well as the effect of the configurations on local buckling behavior. The results suggest that coupling between local and global buckling has an impact on the compressive stiffness and strength of LCS structures, reducing the accuracy of structural designs neglecting these effects.F71E-503E-DE74 | AD?LIO MANUEL DE SOUSA CAVADASN/

    Regional and local land subsidence at the Venice coastland by TerraSAR-X PSI

    Get PDF
    Abstract. Land subsidence occurred at the Venice coastland over the 2008–2011 period has been investigated by Persistent Scatterer Interferometry (PSI) using a stack of 90 TerraSAR-X stripmap images with a 3 m resolution and a 11-day revisiting time. The regular X-band SAR acquisitions over more than three years coupled with the very-high image resolution has significantly improved the monitoring of ground displacements at regional and local scales, e.g., the entire lagoon, especially the historical palaces, the MoSE large structures under construction at the lagoon inlets to disconnect the lagoon from the Adriatic Sea during high tides, and single small structures scattered within the lagoon environments. Our results show that subsidence is characterized by a certain variability at the regional scale with superimposed important local displacements. The movements range from a gentle uplift to subsidence rates of up to 35 mm yr−1. For instance, settlements of 30–35 mm yr−1 have been detected at the three lagoon inlets in correspondence of the MoSE works, and local sinking bowls up to 10 mm yr−1 connected with the construction of new large buildings or restoration works have been measured in the Venice and Chioggia historical centers. Focusing on the city of Venice, the mean subsidence of 1.1 ± 1.0 mm yr−1 confirms the general stability of the historical center

    Are Endothelial Progenitor Cells the Real Solution for Cardiovascular Diseases? Focus on Controversies and Perspectives

    Get PDF
    Advanced knowledge in the field of stem cell biology and their ability to provide a cue for counteracting several diseases are leading numerous researchers to focus their attention on \u201cregenerative medicine\u201d as possible solutions for cardiovascular diseases (CVDs). However, the lack of consistent evidence in this arena has hampered the clinical application. The same condition affects the research on endothelial progenitor cells (EPCs), creating more confusion than comprehension. In this review, this aspect is discussed with particular emphasis. In particular, we describe biology and physiology of EPCs, outline their clinical relevance as both new predictive, diagnostic, and prognostic CVD biomarkers and therapeutic agents, discuss advantages, disadvantages, and conflicting data about their use as possible solutions for vascular impairment and clinical applications, and finally underline a very crucial aspect of EPCs \u201ccharacterization and definition,\u201d which seems to be the real cause of large heterogeneity existing in literature data on this topic

    Clinical reliability of complete-arch fixed prostheses supported by narrow-diameter implants to support complete-arch restorations

    Get PDF
    The aim of this study was to evaluate the clinical application of fixed screw-retained complete-arch rehabilitations supported by four narrow-diameter implants (NDIs). The records of patients treated with complete-arch prostheses screwed onto four NDIs treated with an immediate loading protocol between 2010 and 2020 with at least 1 year of follow-up after the positioning of the definitive restoration were reviewed. The implants were placed according to the final prosthetic design and were immediately loaded. The interim prostheses were replaced after the healing period by definitive acrylic resin titanium-supported prostheses. Patients were followed to evaluate treatment success, the implant survival rate (ISR), and the prosthetic survival rate (PSR). A total of 121 NDIs were positioned in 30 patients to restore 30 complete arches (18 maxilla and 12 mandible). One implant did not achieve osseointegration, resulting in an overall ISR of 99.2%. No prosthetic or implant failures occurred during the 1 to 11 years of follow-up. Three biological and four prosthetic complications occurred, resulting in a treatment rehabilitation survival of 94.1% and a PSR of 86.7%. Despite the limitations of the present retrospective study, such as the use of one single type of dental implant and patients treated in a single rehabilitation center, complete-arch rehabilitation with fixed prostheses supported by four NDIs seems to be a reliable treatment in the medium to long term

    Clinical Reliability of Complete-Arch Fixed Prostheses Supported by Narrow-Diameter Implants to Support Complete-Arch Restorations

    Get PDF
    The aim of this study was to evaluate the clinical application of fixed screw-retained complete-arch rehabilitations supported by four narrow-diameter implants (NDIs). The records of patients treated with complete-arch prostheses screwed onto four NDIs treated with an immediate loading protocol between 2010 and 2020 with at least 1 year of follow-up after the positioning of the definitive restoration were reviewed. The implants were placed according to the final prosthetic design and were immediately loaded. The interim prostheses were replaced after the healing period by definitive acrylic resin titanium-supported prostheses. Patients were followed to evaluate treatment success, the implant survival rate (ISR), and the prosthetic survival rate (PSR). A total of 121 NDIs were positioned in 30 patients to restore 30 complete arches (18 maxilla and 12 mandible). One implant did not achieve osseointegration, resulting in an overall ISR of 99.2%. No prosthetic or implant failures occurred during the 1 to 11 years of follow-up. Three biological and four prosthetic complications occurred, resulting in a treatment rehabilitation survival of 94.1% and a PSR of 86.7%. Despite the limitations of the present retrospective study, such as the use of one single type of dental implant and patients treated in a single rehabilitation center, complete-arch rehabilitation with fixed prostheses supported by four NDIs seems to be a reliable treatment in the medium to long term

    Debris Impact Detection Instrument for Crewed Modules

    Get PDF
    When micrometeoroid or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. This is especially important because the outer walls of pressurized volumes are often not easily accessible, blocked by racks or cabinets. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules. The HIMS uses multiple passive, thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA s 2010 and 2011 Desert Research and Technologies Studies (Desert-RATS or D-RATS). The HDU lab module, as seen from above, has an open circular floorplan divided into eight wedge-shaped Segments. The side wall of the module -- the surface used for this technology demonstration -- is a hard fiberglass composite covered with a layer of sprayed-on foam insulation. Four sensor locations were assigned near the corners of a rectangular pattern on the wall of one segment of the HDU lab module. The flat, self-adhesive sensors were applied to the module during its initial outfitting. To study the influence of the wall s construction (thickness and materials), three sets of four sensors were installed at different layer depths: on the interior of the module s wall, on the exterior of the same wall, and on the exterior of the foam insulation. The signal produced when a vibration passes through a sensor is first sent through a pre-amplifier. The amplified signal then is sent to the data acquisition and data processing systems. The vibration data from the sensors are then processed and reduced to a form suitable for presentation to the crew
    • …
    corecore