4,156 research outputs found

    PERFORMANCE CHARACTERIZATION OF A MOBILE MICROGRID

    Get PDF
    With a rising global emphasis on the use of renewable energy and the reduction of fossil fuels, the Department of Defense is incorporating microgrid technology into energy management systems at forward-deployed and domestic installations. Understanding the nature of the connection between a microgrid and the local utility grid is critical in determining if sensitive loads will be adequately supported. IEEE Standard 1547-2018 applies to this interconnection and specifies the technical requirements and limitations for normal and abnormal operation and expectations for interrupting events. A commercial-off-the-shelf (COTS) microgrid is tested for its compliance to this standard and also for characteristics, such as efficiency, that help define its operational capability. The microgrid can operate in a grid-connected state or an islanded state, disconnected from the utility grid, if the grid is unavailable or if the power quality is unable to support military operations. A microgrid testbed was set up that included the individual COTS components, a centralized control system and several measurement instruments connected that read voltages and currents continuously throughout the experiments. By observing the microgrid functionality, this thesis created an objective characterization template that can be used to assess the capabilities of other COTS microgrids to determine whether they are capable of supporting sensitive loads on forward-deployed or domestic military installations.Captain, United States Marine CorpsApproved for public release. Distribution is unlimited

    Circuit QED with a Flux Qubit Strongly Coupled to a Coplanar Transmission Line Resonator

    Full text link
    We propose a scheme for circuit quantum electrodynamics with a superconducting flux-qubit coupled to a high-Q coplanar resonator. Assuming realistic circuit parameters we predict that it is possible to reach the strong coupling regime. Routes to metrological applications, such as single photon generation and quantum non-demolition measurements are discussed.Comment: 8 pages, 5 figure

    Magnetic field tuning of coplanar waveguide resonators

    Full text link
    We describe measurements on microwave coplanar resonators designed for quantum bit experiments. Resonators have been patterned onto sapphire and silicon substrates, and quality factors in excess of a million have been observed. The resonant frequency shows a high sensitivity to magnetic field applied perpendicular to the plane of the film, with a quadratic dependence for the fundamental, second and third harmonics. Frequency shift of hundreds of linewidths can be obtained.Comment: Accepted for publication in AP

    On the properties of superconducting planar resonators at mK temperatures

    Full text link
    Planar superconducting resonators are now being increasingly used at mK temperatures in a number of novel applications. They are also interesting devices in their own right since they allow us to probe the properties of both the superconductor and its environment. We have experimentally investigated three types of niobium resonators - including a lumped element design - fabricated on sapphire and SiO_2/Si substrates. They all exhibit a non-trivial temperature dependence of their centre frequency and quality factor. Our results shed new light on the interaction between the electromagnetic waves in the resonator and two-level fluctuators in the substrate.Comment: V2 includes some minor corrections/changes. Submitted to PR

    Duality and the Legendre Transform

    Get PDF
    We define a weak-strong coupling transformation based on the Legendre transformation of the effective action. In the case of N\es 2 supersymmetric Yang-Mills theory, this coincides with the duality transform on the low energy effective action considered by Seiberg and Witten. This Legendre transform interpretation of duality generalizes directly to the full effective action, and in principle to other theories.Comment: 6 pages, LaTe

    Technology Development and Advanced Planning for Curation of Returned Mars Samples

    Get PDF
    NASA Johnson Space Center (JSC) curates extraterrestrial samples, providing the international science community with lunar rock and soil returned by the Apollo astronauts, meteorites collected in Antarctica, cosmic dust collected in the stratosphere, and hardware exposed to the space environment. Curation comprises initial characterization of new samples, preparation and allocation of samples for research, and clean, secure long-term storage. The foundations of this effort are the specialized cleanrooms (class 10 to 10,000) for each of the four types of materials, the supporting facilities, and the people, many of whom have been doing detailed work in clean environments for decades. JSC is also preparing to curate the next generation of extraterrestrial samples. These include samples collected from the solar wind, a comet, and an asteroid. Early planning and R\&D are underway to support post-mission sample handling and curation of samples returned from Mars. One of the strong scientific reasons for returning samples from Mars is to search for evidence of current or past life in the samples. Because of the remote possibility that the samples may contain life forms that are hazardous to the terrestrial biosphere, the National Research Council has recommended that all samples returned from Mars be kept under strict biological containment until tests show that they can safely be released to other laboratories. It is possible that Mars samples may contain only scarce or subtle traces of life or prebiotic chemistry that could readily be overwhelmed by terrestrial contamination . Thus, the facilities used to contain, process, and analyze samples from Mars must have a combination of high-level biocontainment and organic / inorganic chemical cleanliness that is unprecedented. JSC has been conducting feasibility studies and developing designs for a sample receiving facility that would offer biocontainment at least the equivalent of current maximum containment BSL-4 (BioSafety Level 4) laboratories, while simultaneously maintaining cleanliness levels equaling those of state-of-the-art cleanrooms. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samples require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new-generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination

    Model Checking Real Time Java Using Java PathFinder

    Get PDF
    The Real Time Specification for Java (RTSJ) is an augmentation of Java for real time applications of various degrees of hardness. The central features of RTSJ are real time threads; user defined schedulers; asynchronous events, handlers, and control transfers; a priority inheritance based default scheduler; non-heap memory areas such as immortal and scoped, and non-heap real time threads whose execution is not impeded by garbage collection. The Robust Software Systems group at NASA Ames Research Center has JAVA PATHFINDER (JPF) under development, a Java model checker. JPF at its core is a state exploring JVM which can examine alternative paths in a Java program (e.g., via backtracking) by trying all nondeterministic choices, including thread scheduling order. This paper describes our implementation of an RTSJ profile (subset) in JPF, including requirements, design decisions, and current implementation status. Two examples are analyzed: jobs on a multiprogramming operating system, and a complex resource contention example involving autonomous vehicles crossing an intersection. The utility of JPF in finding logic and timing errors is illustrated, and the remaining challenges in supporting all of RTSJ are assessed

    On Superspace Chern-Simons-like Terms

    Full text link
    We search for superspace Chern-Simons-like higher-derivative terms in the low energy effective actions of supersymmetric theories in four dimensions. Superspace Chern-Simons-like terms are those gauge-invariant terms which cannot be written solely in terms of field strength superfields and covariant derivatives, but in which a gauge potential superfield appears explicitly. We find one class of such four-derivative terms with N=2 supersymmetry which, though locally on the Coulomb branch can be written solely in terms of field strengths, globally cannot be. These terms are classified by certain Dolbeault cohomology classes on the moduli space. We include a discussion of other examples of terms in the effective action involving global obstructions on the Coulomb branch.Comment: 23 pages; a reference and an author email correcte

    Preventing type 2 diabetes mellitus in Qatar by reducing obesity, smoking, and physical inactivity: mathematical modeling analyses.

    Get PDF
    BACKGROUND: The aim of this study was to estimate the impact of reducing the prevalence of obesity, smoking, and physical inactivity, and introducing physical activity as an explicit intervention, on the burden of type 2 diabetes mellitus (T2DM), using Qatar as an example. METHODS: A population-level mathematical model was adapted and expanded. The model was stratified by sex, age group, risk factor status, T2DM status, and intervention status, and parameterized by nationally representative data. Modeled interventions were introduced in 2016, reached targeted level by 2031, and then maintained up to 2050. Diverse intervention scenarios were assessed and compared with a counter-factual no intervention baseline scenario. RESULTS: T2DM prevalence increased from 16.7% in 2016 to 24.0% in 2050 in the baseline scenario. By 2050, through halting the rise or reducing obesity prevalence by 10-50%, T2DM prevalence was reduced by 7.8-33.7%, incidence by 8.4-38.9%, and related deaths by 2.1-13.2%. For smoking, through halting the rise or reducing smoking prevalence by 10-50%, T2DM prevalence was reduced by 0.5-2.8%, incidence by 0.5-3.2%, and related deaths by 0.1-0.7%. For physical inactivity, through halting the rise or reducing physical inactivity prevalence by 10-50%, T2DM prevalence was reduced by 0.5-6.9%, incidence by 0.5-7.9%, and related deaths by 0.2-2.8%. Introduction of physical activity with varying intensity at 25% coverage reduced T2DM prevalence by 3.3-9.2%, incidence by 4.2-11.5%, and related deaths by 1.9-5.2%. CONCLUSIONS: Major reductions in T2DM incidence could be accomplished by reducing obesity, while modest reductions could be accomplished by reducing smoking and physical inactivity, or by introducing physical activity as an intervention
    corecore