308 research outputs found
Influence of the U(1)_A Anomaly on the QCD Phase Transition
The SU(3)_{r} \times SU(3)_{\ell} linear sigma model is used to study the
chiral symmetry restoring phase transition of QCD at nonzero temperature. The
line of second order phase transitions separating the first order and smooth
crossover regions is located in the plane of the strange and nonstrange quark
masses. It is found that if the U(1)_{A} symmetry is explicitly broken by the
U(1)_{A} anomaly then there is a smooth crossover to the chirally symmetric
phase for physical values of the quark masses. If the U(1)_{A} anomaly is
absent, then there is a phase transition provided that the \sigma meson mass is
at least 600 MeV. In both cases, the region of first order phase transitions in
the quark mass plane is enlarged as the mass of the \sigma meson is increased.Comment: 5 pages, 3 figures, Revtex, discussion extended and references added.
To appear in PR
Topological String Defect Formation During the Chiral Phase Transition
We extend and generalize the seminal work of Brandenberger, Huang and Zhang
on the formation of strings during chiral phase transitions(berger) and discuss
the formation of abelian and non-abelian topological strings during such
transitions in the early Universe and in the high energy heavy-ion collisions.
Chiral symmetry as well as deconfinement are restored in the core of these
defects. Formation of a dense network of string defects is likely to play an
important role in the dynamics following the chiral phase transition. We
speculate that such a network can give rise to non-azimuthal distribution of
transverse energy in heavy-ion collisions.Comment: 10 pages, 4 figures, minor correction
Chiral symmetry restoration in linear sigma models with different numbers of quark flavors
Chiral symmetry restoration at nonzero temperature is studied in the
framework of the O(4) linear sigma model and the U(N_f)_r x U(N_f)_l linear
sigma model with N_f=2,3, and 4 quark flavors. We investigate the temperature
dependence of the masses of the scalar and pseudoscalar mesons, and the
non-strange, strange, and charm condensates within the Hartree approximation as
derived from the Cornwall-Jackiw-Tomboulis formalism. We find that the masses
of the non-strange and strange mesons at nonzero temperature depend sensitively
on the particular symmetry of the model and the number of light quark flavors
N_f. On the other hand, due to the large charm quark mass, neither do charmed
mesons significantly affect the properties of the other mesons, nor do their
masses change appreciably in the temperature range around the chiral symmetry
restoration temperature. In the chiral limit, the transition temperatures for
chiral symmetry restoration are surprisingly close to those found in lattice
QCD.Comment: 28 pages, 8 figure
11 beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle
OBJECTIVE: Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity. \ud
RESEARCH DESIGN AND METHODS: Rodent and human cell cultures, whole-tissue explants, and animal models were used to determine the impact of glucocorticoids and selective 11beta-HSD1 inhibition upon insulin signaling and action. \ud
RESULTS: Dexamethasone decreased insulin-stimulated glucose uptake, decreased IRS1 mRNA and protein expression, and increased inactivating pSer insulin receptor substrate (IRS)-1. 11beta-HSD1 activity and expression were observed in human and rodent myotubes and muscle explants. Activity was predominantly oxo-reductase, generating active glucocorticoid. A1 (selective 11beta-HSD1 inhibitor) abolished enzyme activity and blocked the increase in pSer IRS1 and reduction in total IRS1 protein after treatment with 11DHC but not corticosterone. In C57Bl6/J mice, the selective 11beta-HSD1 inhibitor, A2, decreased fasting blood glucose levels and improved insulin sensitivity. In KK mice treated with A2, skeletal muscle pSer IRS1 decreased and pThr Akt/PKB increased. In addition, A2 decreased both lipogenic and lipolytic gene expression.\ud
CONCLUSIONS: Prereceptor facilitation of glucocorticoid action via 11beta-HSD1 increases pSer IRS1 and may be crucial in mediating insulin resistance in skeletal muscle. Selective 11beta-HSD1 inhibition decreases pSer IRS1, increases pThr Akt/PKB, and decreases lipogenic and lipolytic gene expression that may represent an important mechanism underpinning their insulin-sensitizing action
The K/pi ratio from condensed Polyakov loops
We perform a field-theoretical computation of hadron production in large
systems at the QCD confinement phase transition associated with restoration of
the Z(3) global symmetry. This occurs from the decay of a condensate for the
Polyakov loop. From the effective potential for the Polyakov loop, its mass
just below the confinement temperature T_c is in between the vacuum masses of
the pion and that of the kaon. Therefore, due to phase-space restrictions the
number of produced kaons is roughly an order of magnitude smaller than that of
produced pions, in agreement with recent results from collisions of gold ions
at the BNL-RHIC. From its mass, we estimate that the Polyakov loop condensate
is characterized by a (spatial) correlation scale of 1/m_\ell ~ 1/2 fm. For
systems of deconfined matter of about that size, the free energy may not be
dominated by a condensate for the Polyakov loop, and so the process of
hadronization may be qualitatively different as compared to large systems. In
that vein, experimental data on hadron abundance ratios, for example K/pi, in
high-multiplicity pp events at high energies should be very interesting.Comment: 7 pages, 4 figures; discussion of the two-point function of Polyakov
Loops in small versus large systems adde
Bulk viscosity in kaon-condensed color-flavor locked quark matter
Color-flavor locked (CFL) quark matter at high densities is a color
superconductor, which spontaneously breaks baryon number and chiral symmetry.
Its low-energy thermodynamic and transport properties are therefore dominated
by the H (superfluid) boson, and the octet of pseudoscalar pseudo-Goldstone
bosons of which the neutral kaon is the lightest. We study the CFL-K^0 phase,
in which the stress induced by the strange quark mass causes the kaons to
condense, and there is an additional ultra-light "K^0" Goldstone boson arising
from the spontaneous breaking of isospin. We compute the bulk viscosity of
matter in the CFL-K^0 phase, which arises from the beta-equilibration processes
K^0H+H and K^0+HH. We find that the bulk viscosity varies as T^7, unlike
the CFL phase where it is exponentially Boltzmann-suppressed by the kaon's
energy gap. However, in the temperature range of relevance for r-mode damping
in compact stars, the bulk viscosity in the CFL-K^0 phase turns out to be even
smaller than in the uncondensed CFL phase, which already has a bulk viscosity
much smaller than all other known color-superconducting quark phases.Comment: 23 pages, 8 figures, v2: references added; minor rephrasings in the
conclusions; version to appear in J. Phys.
Stable characteristic evolution of generic 3-dimensional single-black-hole spacetimes
We report new results which establish that the accurate 3-dimensional
numerical simulation of generic single-black-hole spacetimes has been achieved
by characteristic evolution with unlimited long term stability. Our results
cover a selection of distorted, moving and spinning single black holes, with
evolution times up to 60,000M.Comment: 4 pages, 3 figure
News from Lattice QCD on Heavy Quark Potentials and Spectral Functions of Heavy Quark States
We discuss recent lattice results on in-medium properties of hadrons and
focus on thermal properties of heavy quark bound states. We will clarify the
relation between heavy quark free energies and potentials used to analyze the
melting of heavy quark bound states. Furthermore, we present calculations of
meson spectral functions which indicate that the charmonium ground states,
J/psi and eta_c, persist in the quark gluon plasma as well defined resonances
with no significant change of their zero temperature masses at least up to T ~
1.5 T_c. We also briefly comment on the current status of lattice calculations
at non-vanishing baryon number density.Comment: Plenary talk at the 17th International Conference on Ultra
Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland,
California, 11-17 Jan 2004. Submitted to J.Phys.
11 beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle
OBJECTIVE: Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity. \ud
RESEARCH DESIGN AND METHODS: Rodent and human cell cultures, whole-tissue explants, and animal models were used to determine the impact of glucocorticoids and selective 11beta-HSD1 inhibition upon insulin signaling and action. \ud
RESULTS: Dexamethasone decreased insulin-stimulated glucose uptake, decreased IRS1 mRNA and protein expression, and increased inactivating pSer insulin receptor substrate (IRS)-1. 11beta-HSD1 activity and expression were observed in human and rodent myotubes and muscle explants. Activity was predominantly oxo-reductase, generating active glucocorticoid. A1 (selective 11beta-HSD1 inhibitor) abolished enzyme activity and blocked the increase in pSer IRS1 and reduction in total IRS1 protein after treatment with 11DHC but not corticosterone. In C57Bl6/J mice, the selective 11beta-HSD1 inhibitor, A2, decreased fasting blood glucose levels and improved insulin sensitivity. In KK mice treated with A2, skeletal muscle pSer IRS1 decreased and pThr Akt/PKB increased. In addition, A2 decreased both lipogenic and lipolytic gene expression.\ud
CONCLUSIONS: Prereceptor facilitation of glucocorticoid action via 11beta-HSD1 increases pSer IRS1 and may be crucial in mediating insulin resistance in skeletal muscle. Selective 11beta-HSD1 inhibition decreases pSer IRS1, increases pThr Akt/PKB, and decreases lipogenic and lipolytic gene expression that may represent an important mechanism underpinning their insulin-sensitizing action
Singular values of the Dirac operator in dense QCD-like theories
We study the singular values of the Dirac operator in dense QCD-like theories
at zero temperature. The Dirac singular values are real and nonnegative at any
nonzero quark density. The scale of their spectrum is set by the diquark
condensate, in contrast to the complex Dirac eigenvalues whose scale is set by
the chiral condensate at low density and by the BCS gap at high density. We
identify three different low-energy effective theories with diquark sources
applicable at low, intermediate, and high density, together with their
overlapping domains of validity. We derive a number of exact formulas for the
Dirac singular values, including Banks-Casher-type relations for the diquark
condensate, Smilga-Stern-type relations for the slope of the singular value
density, and Leutwyler-Smilga-type sum rules for the inverse singular values.
We construct random matrix theories and determine the form of the microscopic
spectral correlation functions of the singular values for all nonzero quark
densities. We also derive a rigorous index theorem for non-Hermitian Dirac
operators. Our results can in principle be tested in lattice simulations.Comment: 3 references added, version published in JHE
- …
