93 research outputs found

    The HLA class II allele DRB1*1501 is over-represented in patients with idiopathic pulmonary fibrosis

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and medically refractory lung disease with a grim prognosis. Although the etiology of IPF remains perplexing, abnormal adaptive immune responses are evident in many afflicted patients. We hypothesized that perturbations of human leukocyte antigen (HLA) allele frequencies, which are often seen among patients with immunologic diseases, may also be present in IPF patients. Methods/Principal Findings: HLA alleles were determined in subpopulations of IPF and normal subjects using molecular typing methods. HLA-DRB1*15 was over-represented in a discovery cohort of 79 Caucasian IPF subjects who had lung transplantations at the University of Pittsburgh (36.7%) compared to normal reference populations. These findings were prospectively replicated in a validation cohort of 196 additional IPF subjects from four other U.S. medical centers that included both ambulatory patients and lung transplantation recipients. High-resolution typing was used to further define specific HLA-DRB1*15 alleles. DRB1*1501 prevalence in IPF subjects was similar among the 143 ambulatory patients and 132 transplant recipients (31.5% and 34.8%, respectively, p = 0.55). The aggregate prevalence of DRB1*1501 in IPF patients was significantly greater than among 285 healthy controls (33.1% vs. 20.0%, respectively, OR 2.0; 95%CI 1.3-2.9, p = 0.0004). IPF patients with DRB1*1501 (n = 91) tended to have decreased diffusing capacities for carbon monoxide (DLCO) compared to the 184 disease subjects who lacked this allele (37.8±1.7% vs. 42.8±1.4%, p = 0.036). Conclusions/Significance: DRB1*1501 is more prevalent among IPF patients than normal subjects, and may be associated with greater impairment of gas exchange. These data are novel evidence that immunogenetic processes can play a role in the susceptibility to and/or manifestations of IPF. Findings here of a disease association at the HLA-DR locus have broad pathogenic implications, illustrate a specific chromosomal area for incremental, targeted genomic study, and may identify a distinct clinical phenotype among patients with this enigmatic, morbid lung disease

    ‘Multi-Epitope-Targeted’ Immune-Specific Therapy for a Multiple Sclerosis-Like Disease via Engineered Multi-Epitope Protein Is Superior to Peptides

    Get PDF
    Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS) yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and “epitope spread”, have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such “multi-epitope-targeting” approach in murine experimental autoimmune encephalomyelitis (EAE) associated with a single (“classical”) or multiple (“complex”) anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc) encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as “multi-epitope-targeting” agents. Y-MSPc was superior to peptide(s) in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells). Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of “classical” or “complex EAE” or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a “multi-epitope-targeting” strategy is required for effective immune-specific therapy of organ-specific autoimmune diseases associated with complex and dynamic pathogenic autoimmunity, such as MS; our data further demonstrate that the “multi-epitope-targeting” approach to therapy is optimized through specifically designed multi-epitope-proteins, rather than myelin peptide cocktails, as “multi-epitope-targeting” agents. Such artificial multi-epitope proteins can be tailored to other organ-specific autoimmune diseases

    A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12

    Get PDF
    Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e., years). The length scales span the farthest reaches of the human body (i.e., meters) down to the range of molecular interactions (i.e., nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales

    Is autoimmunity the Achilles' heel of cancer immunotherapy?

    Full text link
    The emergence of immuno-oncology as the first broadly successful strategy for metastatic cancer will require clinicians to integrate this new pillar of medicine with chemotherapy, radiation, and targeted small-molecule compounds. Of equal importance is gaining an understanding of the limitations and toxicities of immunotherapy. Immunotherapy was initially perceived to be a relatively less toxic approach to cancer treatment than other available therapies-and surely it is, when compared to those. However, as the use of immunotherapy becomes more common, especially as first- and second-line treatments, immunotoxicity and autoimmunity are emerging as the Achilles' heel of immunotherapy. In this Perspective, we discuss evidence that the occurrence of immunotoxicity bodes well for the patient, and describe mechanisms that might be related to the induction of autoimmunity. We then explore approaches to limit immunotoxicity, and discuss the future directions of research and reporting that are needed to diminish it

    Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis

    Get PDF
    Relapsing experimental autoimmune encephalomyelitis (R-EAE) in the SJL mouse is a Th1-mediated autoimmune demyelinating disease model for human multiple sclerosis and is characterized by infiltration of the central nervous system (CNS) by Th1 cells and macrophages. Disease relapses are mediated by T cells specific for endogenous myelin epitopes released during acute disease, reflecting a critical role for epitope spreading in the perpetuation of chronic central CNS pathology. We asked whether blockade of the CD40–CD154 (CD40L) costimulatory pathway could suppress relapses in mice with established R-EAE. Anti-CD154 antibody treatment at either the peak of acute disease or during remission effectively blocked clinical disease progression and CNS inflammation. This treatment blocked Th1 differentiation and effector function rather than expansion of myelin-specific T cells. Although T-cell proliferation and production of interleukin (IL)-2, IL-4, IL-5, and IL-10 were normal, antibody treatment severely inhibited interferon-γ production, myelin peptide–specific delayed-type hypersensitivity responses, and induction of encephalitogenic effector cells. Anti-CD154 antibody treatment also impaired the expression of clinical disease in adoptive recipients of encephalitogenic T cells, suggesting that CD40–CD154 interactions may be involved in directing the CNS migration of these cells and/or in their effector ability to activate CNS macrophages/microglia. Thus, blockade of CD154–CD40 interactions is a promising immunotherapeutic strategy for treatment of ongoing T cell–mediated autoimmune diseases

    Vaccine-like Controlled-Release Delivery of an Immunomodulating Peptide to Treat Experimental Autoimmune Encephalomyelitis

    Get PDF
    The objective of this work is to use colloidal gel from alginate-chitosan-PLGA complex to deliver Ac-PLP-BPI-NH2-2 peptide in a controlled-release manner as a vaccine-like therapeutic to suppress experimental autoimmune encephalomyelitis (EAE) in the mouse model. Oppositely charged PLGA nanoparticles were prepared by a solvent diffusion method. The carboxyl group of the alginate and the amine group of the chitosan coated the nanoparticles with negative and positive charges, respectively. The peptide (Ac-PLP-BPI-NH2-2), designed to bind to MHC-II and ICAM-1 simultaneously, was formulated into the colloidal gel by physical mixture. Vaccine-like administration of the peptide-loaded colloidal gel (Ac-PLP-BPI-NH2-2-NP) was achieved by subcutaneous (s.c.) injection to EAE mice. Disease severity was measured using clinical scoring and percent change in body weight. Cytokine production was determined using the splenocytes from Ac-PLP-BPI-NH2-2-NP-treated mice and compared to that of controls. Ac-PLP-BPI-NH2-2-NP suppressed and delayed the onset of EAE as well as Ac-PLP-BPI-NH2-2 when delivered in a vaccine-like manner. IL-6 and IL-17 levels were significantly lower in the Ac-PLP-BPI-NH2-2-NP-treated mice compared to the mice group treated with blank colloidal gel, suggesting that the mechanism of suppression of EAE is due to a shift in the immune response away from Th17 production. The results of this study suggest that a one-time s.c. administration of Ac-PLP-BPI-NH2-2 formulated in a colloidal gel can produce long-term suppression of EAE by reducing Th17 proliferation
    corecore