11,493 research outputs found
Temperature dependence of the coercive field in single-domain particle systems
The magnetic properties of Cu97Co3 and Cu90Co10 granular alloys were measured
over a wide temperature range (2 to 300K). The measurements show an unusual
temperature dependence of the coercive field. A generalized model is proposed
and explains well the experimental behavior over a wide temperature range. The
coexistence of blocked and unblocked particles for a given temperature rises
difficulties that are solved here by introducing a temperature dependent
blocking temperature. An empirical factor gamma arise from the model and is
directly related to the particle interactions. The proposed generalized model
describes well the experimental results and can be applied to other
single-domain particle system.Comment: 7 pages, 8 figures, revised version, accepted to Physical Review B on
29/04/200
Optimal Space-time Coverage and Exploration Costs in Groundwater Monitoring Networks
A method to determine the optimal subset of stations from a reference level groundwater monitoring network is proposed. The method considers the redundancy of data from historical time series, the times associated with the total distance required to run through the entire monitoring network, and the sum of the times for each monitoring station. The method was applied to a hypothetical case-study consisting of a monitoring network with 32 stations. Cost-benefit analysis was performed to determine the number of stations to include in the new design versus loss of information. This optimisation problem was solved with simulated annealing. Results showed that the relative reduction in exploration costs more than compensates for the relative loss in data representativeness
Implantação e evolução dos trabalhos de pesquisa participativa em melhoramento de mandioca no Nordeste Brasileiro.
Este trabalho faz um breve histórico sobre a implantação e os avanços da pesquisa participativa em melhoramento de mandioca (PPMM) no Nordeste do Brasil, desenvolvida pela Embrapa Mandioca e Fruticultura. A metodologia de pesquisa participativa em melhoramento de mandioca foi desenvolvida inicialmente no Centro Internacional de Agricultura Tropical (CIAT), na Colômbia e introduzida e adaptada as condições das regiões semi-árida do Nordeste brasileiro a partir de 1993. Os primeiros resultados demostraram que a metodologia de PPMM como um complemento ao método convencional de melhoramento genético da cultura.bitstream/item/81562/1/Implantacao-evolucao-Wania-Fukuda-Docuemntos-92-2000.pdfMemória
The mixed capacitated arc routing problem with non-overlapping routes
Real world applications for vehicle collection or delivery along streets usually lead to arc routing problems, with additional and complicating constraints. In this paper we focus on arc routing with an additional constraint to identify vehicle service routes with a limited number of shared nodes, i.e. vehicle service routes with a limited number of intersections. This constraint leads to solutions that are better shaped for real application purposes. We propose a new problem, the bounded overlapping MCARP (BCARP), which is defined as the mixed capacitated arc routing problem (MCARP) with an additional constraint imposing an upper bound on the number of nodes that are common to different routes. The best feasible upper bound is obtained from a modified MCARP in which the minimization criteria is given by the overlapping of the routes. We show how to compute this bound by solving a simpler problem. To obtain feasible solutions for the bigger instances of the KARP heuristics are also proposed. Computational results taken from two well known instance sets show that, with only a small increase in total time traveled, the model BCARP produces solutions that are more attractive to implement in practice than those produced by the MCARP modelinfo:eu-repo/semantics/submittedVersio
Light field coding with field of view scalability and exemplar-based inter-layer prediction
Light field imaging based on microlens arrays—a.k.a. holoscopic, plenoptic, and integral imaging—has currently risen up as a feasible and prospective technology for future image and video applications. However, deploying actual light field applications will require identifying more powerful representations and coding solutions that support arising new manipulation and interaction functionalities. In this context, this paper proposes a novel scalable coding solution that supports a new type of scalability, referred to as field-of-view scalability. The proposed scalable coding solution comprises a base layer compliant with the High Efficiency Video Coding (HEVC) standard, complemented by one or more enhancement layers that progressively allow richer versions of the same light field content in terms of content manipulation and interaction possibilities. In addition, to achieve high-compression performance in the enhancement layers, novel exemplar-based interlayer coding tools are also
proposed, namely: 1) a direct prediction based on exemplar texture samples from lower layers and 2) an interlayer compensated prediction using a reference picture that is built relying on an exemplar-based algorithm for texture synthesis. Experimental results demonstrate the advantages of the proposed scalable coding solution to cater to users with different preferences/requirements in terms of interaction functionalities, while providing better rate-
distortion performance (independently of the optical setup used for acquisition) compared to HEVC and other scalable light field coding solutions in the literature.info:eu-repo/semantics/acceptedVersio
Scalable light field coding with support for region of interest enhancement
Light field imaging based on microlens arrays - a.k.a. holoscopic, plenoptic, and integral imaging - has currently risen up as a feasible and prospective technology for future image and video applications. However, deploying actual light field applications will require identifying more powerful representation and coding solutions that support emerging manipulation and interaction functionalities. In this context, this paper proposes a novel scalable coding approach that supports a new type of scalability, referred to as Field of View (FOV) scalability, in which enhancement layers can correspond to regions of interest (ROI). The proposed scalable coding approach comprises a base layer compliant with the High Efficiency Video Coding (HEVC) standard, complemented by one or more enhancement layers that progressively allow richer versions of the same light field content in terms of content manipulation and interaction possibilities, for the whole scene or just for a given ROI. Experimental results show the advantages of the proposed scalable coding approach with ROI support to cater for users with different preferences/requirements in terms of interaction functionalities.info:eu-repo/semantics/acceptedVersio
- …