33,010 research outputs found

    Galactic Archaeology and Minimum Spanning Trees

    Get PDF
    Chemical tagging of stellar debris from disrupted open clusters and associations underpins the science cases for next-generation multi-object spectroscopic surveys. As part of the Galactic Archaeology project TraCD (Tracking Cluster Debris), a preliminary attempt at reconstructing the birth clouds of now phase-mixed thin disk debris is undertaken using a parametric minimum spanning tree (MST) approach. Empirically-motivated chemical abundance pattern uncertainties (for a 10-dimensional chemistry-space) are applied to NBODY6-realised stellar associations dissolved into a background sea of field stars, all evolving in a Milky Way potential. We demonstrate that significant population reconstruction degeneracies appear when the abundance uncertainties approach 0.1 dex and the parameterised MST approach is employed; more sophisticated methodologies will be required to ameliorate these degeneracies.Comment: To appear in "Multi-Object Spectroscopy in the Next Decade: Big Questions, Large Surveys and Wide Fields"; Held: Santa Cruz de La Palma, Canary Islands, Spain, 2-6 Mar 2015; ed. I Skillen & S. Trager; ASP Conference Series (Figures now optimised for B&W printing

    Vortex-type elastic structured media and dynamic shielding

    Full text link
    The paper addresses a novel model of metamaterial structure. A system of spinners has been embedded into a two-dimensional periodic lattice system. The equations of motion of spinners are used to derive the expression for the chiral term in the equations describing the dynamics of the lattice. Dispersion of elastic waves is shown to possess innovative filtering and polarization properties induced by the vortextype nature of the structured media. The related homogenised effective behavior is obtained analytically and it has been implemented to build a shielding cloak around an obstacle. Analytical work is accompanied by numerical illustrations.Comment: 24 pages, 13 figure

    Cultural economy: A critical review

    Get PDF
    10.1191/0309132505ph567oaProgress in Human Geography295541-56

    Gravitational hydrodynamics of large scale structure formation

    Get PDF
    The gravitational hydrodynamics of the primordial plasma with neutrino hot dark matter is considered as a challenge to the bottom-up cold dark matter paradigm. Viscosity and turbulence induce a top-down fragmentation scenario before and at decoupling. The first step is the creation of voids in the plasma, which expand to 37 Mpc on the average now. The remaining matter clumps turn into galaxy clusters. Turbulence produced at expanding void boundaries causes a linear morphology of 3 kpc fragmenting protogalaxies along vortex lines. At decoupling galaxies and proto-globular star clusters arise; the latter constitute the galactic dark matter halos and consist themselves of earth-mass H-He planets. Frozen planets are observed in microlensing and white-dwarf-heated ones in planetary nebulae. The approach also explains the Tully-Fisher and Faber-Jackson relations, and cosmic microwave temperature fluctuations of micro-Kelvins.Comment: 6 pages, no figure

    Properties of simulated Milky Way-mass galaxies in loose group and field environments

    Get PDF
    We test the validity of comparing simulated field disk galaxies with the empirical properties of systems situated within environments more comparable to loose groups, including the Milky Way's Local Group. Cosmological simulations of Milky Way-mass galaxies have been realised in two different environment samples: in the field and in environments with similar properties to the Local Group. Apart from the environments of the galaxies, the samples are kept as homogeneous as possible with equivalent ranges in last major merger time, halo mass and halo spin. Comparison of these two samples allow for systematic differences in the simulations to be identified. Metallicity gradients, disk scale lengths, colours, magnitudes and age-velocity dispersion relations are studied for each galaxy in the suite and the strength of the link between these and environment of the galaxies is studied. The bulge-to-disk ratio of the galaxies show that these galaxies are less spheroid dominated than many other simulated galaxies in literature with the majority of both samples being disk dominated. We find that secular evolution and mergers dominate the spread of morphologies and metallicity gradients with no visible differences between the two environment samples. In contrast with this consistency in the two samples there is tentative evidence for a systematic difference in the velocity dispersion-age relations of galaxies in the different environments. Loose group galaxies appear to have more discrete steps in their velocity dispersion-age relations. We conclude that at the current resolution of cosmological galaxy simulations field environment galaxies are sufficiently similar to those in loose groups to be acceptable proxies for comparison with the Milky Way provided that a similar assembly history is considered.Comment: 16 pages, 11 figures, abstract abridged for arXiv. Accepted for publication in Astronomy & Astrophysic

    Modification of chiral dimethyl tartrate through transesterification : immobilisation on POSS and enantioselectivity reversion in Sharpless asymmetric epoxidation

    Get PDF
    Modification of dimethyl tartrate has been investigated through transesterification with aminoalcohols to provide reactive functionalities for the covalent bonding of chiral tartrate to polyhedral oligomeric silsesquioxanes. The transesterification of dimethyl tartrate has been widely studied by means of using different catalytic systems and reaction conditions. Through the proper selection of both, the catalytic system and the reaction conditions, it is possible to achieve the mono- or the bis-substituted tartrate derivative as sole products. All the intermediate chiral tartrate-derived ligands were successfully used in the homogeneous enantioselective epoxidation of allylic alcohols providing moderate enantiomeric excess over the products. Attached amine groups have been used to support the modified tartrate ligands onto a haloaryl-functionalized silsesquioxane moiety. This final chiral tartrate ligand displays enantioselectivity reversion in the asymmetric epoxidation of allylic alcohols with regards to the starting dimethyl tartrate ligand, having both molecules them the same chiral sign. However, the POSS-containing ligand can be easily recovered in almost quantitative yield and reused in asymmetric epoxidation reactions. In addition, recovered silsesquioxane-pendant ligand, though displaying decreasing catalytic activity in recycling epoxidation tests, showed very stable enantioselective behavior

    A Model for Star Formation, Gas Flows and Chemical Evolution in Galaxies at High Redshifts

    Full text link
    Motivated by the increasing use of the Kennicutt-Schmidt (K-S) star formation law to interpret observations of high redshift galaxies, the importance of gas accretion to galaxy formation, and the recent observations of chemical abundances in galaxies at z~2-3, I use simple analytical models to assess the consistency of these processes of galaxy evolution with observations and with each other. I derive the time dependence of star formation implied by the K-S law, and show that the sustained high star formation rates observed in galaxies at z~2-3 require the accretion of additional gas. A model in which the gas accretion rate is approximately equal to the combined star formation and outflow rates broadly reproduces the observed trends of star formation rate with galaxy age. Using an analytical description of chemical evolution, I also show that this model, further constrained to have an outflow rate roughly equal to the star formation rate, reproduces the observed mass-metallicity relation at z~2.Comment: 7 pages, 3 figures. Accepted for publication in Ap

    Assembly and force measurement with SPM-like probes in holographic optical tweezers

    Get PDF
    We report a high fidelity tomographic reconstruction of the quantum state of photon pairs generated by parametric down-conversion with orbital angular momentum (OAM) entanglement. Our tomography method allows us to estimate an upper and lower bound for the entanglement between the down-converted photons. We investigate the two-dimensional state subspace defined by the OAM states ±ℓ and superpositions thereof, with ℓ=1, 2, ..., 30. We find that the reconstructed density matrix, even for OAMs up to around ℓ=20, is close to that of a maximally entangled Bell state with a fidelity in the range between F=0.979 and F=0.814. This demonstrates that, although the single count-rate diminishes with increasing ℓ, entanglement persists in a large dimensional state space

    FUSE Observations of Outflowing OVI in the Dwarf Starburst Galaxy NGC1705

    Get PDF
    We report FUSE far-UV spectroscopy of the prototypical dwarf starburst galaxy NGC 1705. These data allow us for the first time to probe the coronal-phase gas (T = 10E5 to 10E6 K) that may dominate the radiative cooling of the supernova-heated ISM and thereby determine the dynamical evolution of starburst-driven outflows. We detect a broad (100 km/s) and blueshifted (by 80 km/s) OVI absorption-line arising in the previously-known galactic outflow. The properties of the OVI absorption are inconsistent with the standard superbubble model in which this gas arises in a conductive interface inside the outer shell. We show that the superbubble in NGC 1705 is blowing out of the galaxy ISM. During blow-out, coronal-phase gas can be created by hydrodynamical mixing as hot gas rushes out through fissures in the fragmenting shell of cool gas. As the coronal gas cools radiatively, it can naturally produce the observed OVI column density and outflow speed. The OVI data show that the cooling rate in the coronal-phase gas is less than about 10% of the supernova heating rate. Since the X-ray luminosity from hotter gas is even smaller, we conclude that radiative losses are insignificant. The outflow should be able to vent its metals and kinetic energy out of the galaxy. This process has potentially important implications for the evolution of dwarf galaxies and the IGM.Comment: ApJ (in press
    corecore