275 research outputs found

    Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles

    Get PDF
    Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini’s conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam model the singular dynamic method introduced by Renard. A particular emphasis is given in the use of a restitution coefficient in the impact law. Finally, various numerical results are presented and energy conservation capabilities of the schemes are investigated

    Biochemical Reaction Rules with Constraints

    Get PDF
    International audienceWe propose React(C), an expressive programming language for stochastic modeling and simulation in systems biology, that is based on biochemical reactions with constraints. We prove that React(C) can express the stochastic pi-calculus, in contrast to previous rule-based programming languages, and further illustrate the high expressiveness of React(C). We present a stochastic simulator for React(C) independently of the choice of the constraint language C. Our simulator must decide for a given reaction rule whether it can be applied to the current biochemical solution. We show that this decision problem is NP-complete for arbitrary constraint systems C, and that it can be solved in polynomial time for rules of bounded arity. In practice, we propose to solve this problem by constraint programming

    Computing the first eigenpair of the p-Laplacian via inverse iteration of sublinear supersolutions

    Full text link
    We introduce an iterative method for computing the first eigenpair (λp,ep)(\lambda_{p},e_{p}) for the pp-Laplacian operator with homogeneous Dirichlet data as the limit of (μq,uq)(\mu_{q,}u_{q}) as qpq\rightarrow p^{-}, where uqu_{q} is the positive solution of the sublinear Lane-Emden equation Δpuq=μquqq1-\Delta_{p}u_{q}=\mu_{q}u_{q}^{q-1} with same boundary data. The method is shown to work for any smooth, bounded domain. Solutions to the Lane-Emden problem are obtained through inverse iteration of a super-solution which is derived from the solution to the torsional creep problem. Convergence of uqu_{q} to epe_{p} is in the C1C^{1}-norm and the rate of convergence of μq\mu_{q} to λp\lambda_{p} is at least O(pq)O(p-q). Numerical evidence is presented.Comment: Section 5 was rewritten. Jed Brown was added as autho

    The Attributed Pi Calculus with Priorities

    Get PDF
    International audienceWe present the attributed π\pi-calculus for modeling concurrent systems with interaction constraints depending on the values of attributes of processes. The π\pi-calculus serves as a constraint language underlying the π\pi-calculus. Interaction constraints subsume priorities, by which to express global aspects of populations. We present a nondeterministic and a stochastic semantics for the attributed π\pi-calculus. We show how to encode the π\pi-calculus with priorities and polyadic synchronization π\pi@ and thus dynamic compartments, as well as the stochastic π\pi-calculus with concurrent objects spico. We illustrate the usefulness of the attributed π\pi-calculus for modeling biological systems at two particular examples: Euglena’s spatial movement in phototaxis, and cooperative protein binding in gene regulation of bacteriophage lambda. Furthermore, population-based model is supported beside individual-based modeling. A stochastic simulation algorithm for the attributed π\pi-calculus is derived from its stochastic semantics. We have implemented a simulator and present experimental results, that confirm the practical relevance of our approach

    Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reliable predictions of Cytotoxic T lymphocyte (CTL) epitopes are essential for rational vaccine design. Most importantly, they can minimize the experimental effort needed to identify epitopes. NetCTL is a web-based tool designed for predicting human CTL epitopes in any given protein. It does so by integrating predictions of proteasomal cleavage, TAP transport efficiency, and MHC class I affinity. At least four other methods have been developed recently that likewise attempt to predict CTL epitopes: EpiJen, MAPPP, MHC-pathway, and WAPP. In order to compare the performance of prediction methods, objective benchmarks and standardized performance measures are needed. Here, we develop such large-scale benchmark and corresponding performance measures and report the performance of an updated version 1.2 of NetCTL in comparison with the four other methods.</p> <p>Results</p> <p>We define a number of performance measures that can handle the different types of output data from the five methods. We use two evaluation datasets consisting of known HIV CTL epitopes and their source proteins. The source proteins are split into all possible 9 mers and except for annotated epitopes; all other 9 mers are considered non-epitopes. In the RANK measure, we compare two methods at a time and count how often each of the methods rank the epitope highest. In another measure, we find the specificity of the methods at three predefined sensitivity values. Lastly, for each method, we calculate the percentage of known epitopes that rank within the 5% peptides with the highest predicted score.</p> <p>Conclusion</p> <p>NetCTL-1.2 is demonstrated to have a higher predictive performance than EpiJen, MAPPP, MHC-pathway, and WAPP on all performance measures. The higher performance of NetCTL-1.2 as compared to EpiJen and MHC-pathway is, however, not statistically significant on all measures. In the large-scale benchmark calculation consisting of 216 known HIV epitopes covering all 12 recognized HLA supertypes, the NetCTL-1.2 method was shown to have a sensitivity among the 5% top-scoring peptides above 0.72. On this dataset, the best of the other methods achieved a sensitivity of 0.64. The NetCTL-1.2 method is available at <url>http://www.cbs.dtu.dk/services/NetCTL</url>.</p> <p>All used datasets are available at <url>http://www.cbs.dtu.dk/suppl/immunology/CTL-1.2.php</url>.</p

    Heterogeneous Response to a Quorum-Sensing Signal in the Luminescence of Individual Vibrio fischeri

    Get PDF
    The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism: the bacterium releases diffusible small molecules (autoinducers) that accumulate in the environment as the population density increases. This accumulation of autoinducer (AI) eventually activates transcriptional regulators for bioluminescence as well as host colonization behaviors. Although V.fischeri quorum sensing has been extensively characterized in bulk populations, far less is known about how it performs at the level of the individual cell, where biochemical noise is likely to limit the precision of luminescence regulation. We have measured the time-dependence and AI-dependence of light production by individual V.fischeri cells that are immobilized in a perfusion chamber and supplied with a defined concentration of exogenous AI. We use low-light level microscopy to record and quantify the photon emission from the cells over periods of several hours as they respond to the introduction of AI. We observe an extremely heterogeneous response to the AI signal. Individual cells differ widely in the onset time for their luminescence and in their resulting brightness, even in the presence of high AI concentrations that saturate the light output from a bulk population. The observed heterogeneity shows that although a given concentration of quorum signal may determine the average light output from a population of cells, it provides far weaker control over the luminescence output of each individual cell

    Novel Functional MAR Elements of Double Minute Chromosomes in Human Ovarian Cells Capable of Enhancing Gene Expression

    Get PDF
    Double minute chromosomes or double minutes (DMs) are cytogenetic hallmarks of extrachromosomal genomic amplification and play a critical role in tumorigenesis. Amplified copies of oncogenes in DMs have been associated with increased growth and survival of cancer cells but DNA sequences in DMs which are mostly non-coding remain to be characterized. Following sequencing and bioinformatics analyses, we have found 5 novel matrix attachment regions (MARs) in a 682 kb DM in the human ovarian cancer cell line, UACC-1598. By electrophoretic mobility shift assay (EMSA), we determined that all 5 MARs interact with the nuclear matrix in vitro. Furthermore, qPCR analysis revealed that these MARs associate with the nuclear matrix in vivo, indicating that they are functional. Transfection of MARs constructs into human embryonic kidney 293T cells showed significant enhancement of gene expression as measured by luciferase assay, suggesting that the identified MARS, particularly MARs 1 to 4, regulate their target genes in vivo and are potentially involved in DM-mediated oncogene activation

    Centrosome clustering and Cyclin D1 gene amplification in double minutes are common events in chromosomal unstable bladder tumors

    Get PDF
    Background: Aneuploidy, centrosome abnormalities and gene amplification are hallmarks of chromosome instability (CIN) in cancer. Yet there are no studies of the in vivo behavior of these phenomena within the same bladder tumor. Methods: Twenty-one paraffin-embedded bladder tumors were analyzed by conventional comparative genome hybridization and fluorescence in situ hybridization (FISH) with a cyclin D1 gene (CCND1)/centromere 11 dual-color probe. Immunofluorescent staining of α, β and γ tubulin was also performed. Results: Based on the CIN index, defined as the percentage of cells not displaying the modal number for chromosome 11, tumors were classified as CIN-negative and CIN-positive. Fourteen out of 21 tumors were considered CIN-positive. All T1G3 tumors were included in the CIN-positive group whereas the majority of Ta samples were classified as CIN-negative tumors. Centrosome clustering was observed in six out of 12 CIN-positive tumors analyzed. CCND1 amplification in homogeneously staining regions was present in six out of 14 CIN-positive tumors; three of them also showed amplification of this gene in double minutes. Conclusions: Complex in vivo behavior of CCND1 amplicon in bladder tumor cells has been demonstrated by accurate FISH analysis on paraffin-embedded tumors. Positive correlation between high heterogeneity, centrosome abnormalities and CCND1 amplification was found in T1G3 bladder carcinomas. This is the first study to provide insights into the coexistence of CCND1 amplification in homogeneously staining regions and double minutes in primary bladder tumors. It is noteworthy that those patients whose tumors showed double minutes had a significantly shorter overall survival rate (p < 0.001)

    Eigenvalue Problem in Two Dimensions for an Irregular Boundary II: Neumann Condition

    Full text link
    We formulate a systematic elegant perturbative scheme for determining the eigenvalues of the Helmholtz equation (\bigtriangledown^{2} + k^{2}){\psi} = 0 in two dimensions when the normal derivative of {\psi} vanishes on an irregular closed curve. Unique feature of this method, unlike other perturbation schemes, is that it does not require a separate formalism to treat degeneracies. Degenerate states are handled equally elegantly as the non-degenerate ones. A real parameter, extracted from the parameters defining the irregular boundary, serves as a perturbation parameter in this scheme as opposed to earlier schemes where the perturbation parameter is an artificial one. The efficacy of the proposed scheme is gauged by calculating the eigenvalues for elliptical and supercircular boundaries and comparing with the results obtained numerically. We also present a simple and interesting semi-empirical formula, determining the eigenspectrum of the 2D Helmholtz equation with the Dirichlet or the Neumann condition for a supercircular boundary. A comparison of the eigenspectrum for several low-lying modes obtained by employing the formula with the corresponding numerical estimates shows good agreement for a wide range of the supercircular exponent.Comment: 26 pages, 12 figure
    corecore