264 research outputs found

    Characterisation and cross-amplification of polymorphic microsatellite loci in ant-associated root-aphids

    Get PDF
    Twenty-six polymorphic microsatellite loci were developed for four species of ant-associated root-aphids: Geoica utricularia, Forda marginata, Tetraneura ulmi and Anoecia corni. We found up to 9 alleles per locus, with an average of 4.8. We also report polymorphic cross-amplification of eleven of these markers between different pairs of study species. Furthermore, we tested previously published aphid microsatellites and found one locus developed for Pemphigus bursarius to be polymorphic in G. utricularia. These microsatellite markers will be useful to study the population structure of aphids associated with the ant Lasius flavus and possibly other ants. Such studies are relevant because: 1. L. flavus mounds and their associated flora and fauna are often key components in protected temperate grasslands, and 2. L. flavus and its diverse community of root-aphids provide an interesting model system for studying the long-term stability of mutualistic interactions

    Renewed diversification is associated with new ecological opportunity in the N eotropical turtle ants

    Full text link
    Ecological opportunity, defined as access to new resources free from competitors, is thought to be a catalyst for the process of adaptive radiation. Much of what we know about ecological opportunity, and the larger process of adaptive radiation, is derived from vertebrate diversification on islands. Here, we examine lineage diversification in the turtle ants ( C ephalotes ), a species‐rich group of ants that has diversified throughout the N eotropics. We show that crown group turtle ants originated during the E ocene (around 46 mya), coincident with global warming and the origin of many other clades. We also show a marked lineage‐wide slowdown in diversification rates in the M iocene. Contrasting this overall pattern, a species group associated with the young and seasonally harsh C hacoan biogeographic region underwent a recent burst of diversification. Subsequent analyses also indicated that there is significant phylogenetic clustering within the C hacoan region and that speciation rates are highest there. Together, these findings suggest that recent ecological opportunity, from successful colonization of novel habitat, may have facilitated renewed turtle ant diversification. Our findings highlight a central role of ecological opportunity within a successful continental radiation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102632/1/jeb12300-sup-0001-AppendixFigS1-S4-TableS1-S4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102632/2/jeb12300.pd

    Low diversity and host specificity in the gut microbiome community of Eciton army ants (Hymenoptera: Formicidae: Dorylinae) in a Costa Rican rainforest

    Get PDF
    Neotropical army ants of the genus Eciton are top arthropod predators in tropical rainforests. Microbial symbionts, including Unclassified Firmicutes (UF) and Unclassified Entomoplasmatales (UE), are associated with this genus and likely play a significant role in the biology of these ants. While previous work focused on associations of army ants and gut microbes across large geographic scales, here we report a community survey of the gut microbes colonizing the six sympatric Eciton army ant species in a single Costa Rican location. Furthermore, we characterized the gut microbiota associated with different army ant castes in the swarm-raiding species Eciton burchellii. We employed a combination of 16S ribosomal RNA (rRNA) amplicon sequencing as well as fluorescence and electron microscopy to identify gut microbes and to verify their presence in ant guts. We also measured the diversity and interaction specificity of the ant-gut microbe interaction network. The two most dominant operational taxonomic unit (OTU) phylotypes in all species were related to UF and UE previously found in army ants, followed by OTUs assigned to the genus Weissella. Furthermore, the worker castes of E. burchellii shared similar gut microbiota, also dominated by UF and UE phylotypes. Overall, we found a low diversity of gut microbes and a low interaction specificity between army ants and microbes at the community level, mainly because most microbe strains were detected in various Eciton species. The fluorescence in-situ hybridization analyses documented the presence of the two dominant phylotypes within ant guts, and electron microscopy located bacterial biofilms in the hindgut near the microvilli. Their morphology suggests that these bacteria probably belong to the dominant phylotypes UF and UE. Taken together, our results confirm that the Eciton gut microbiome is consistently dominated by a few species of specialized bacteria that may improve nutrient uptake efficiency of host ants. Further research should employ multi-omics and culture-dependent strategies to fully understand the role of these potential symbionts in ant ecophysiology

    The genomic basis of army ant chemosensory adaptations

    Get PDF
    The evolution of mass raiding has allowed army ants to become dominant arthropod predators in the tropics. Although a century of research has led to many discoveries about behavioural, morphological and physiological adaptations in army ants, almost nothing is known about the molecular basis of army ant biology. Here we report the genome of the iconic New World army ant Eciton burchellii, and show that it is unusu-ally compact, with a reduced gene complement relative to other ants. In contrast to this overall reduction, a particular gene subfamily (9-exon ORs) expressed predomi-nantly in female antennae is expanded. This subfamily has previously been linked to the recognition of hydrocarbons, key olfactory cues used in insect communication and prey discrimination. Confocal microscopy of the brain showed a correspond-ing expansion in a putative hydrocarbon response centre within the antennal lobe, while scanning electron microscopy of the antenna revealed a particularly high den-sity of hydrocarbon-sensitive sensory hairs. E. burchellii shares these features with its predatory and more cryptic relative, the clonal raider ant. By integrating genomic, transcriptomic and anatomical analyses in a comparative context, our work thus pro-vides evidence that army ants and their relatives possess a suite of modifications in the chemosensory system that may be involved in behavioural coordination and prey selection during social predation. It also lays the groundwork for future studies of army ant biology at the molecular level.National Science Foundation/[NSF IOS 1916995]/NSF/Estados UnidosNational Science Foundation/[NSF DEB 1900357]/NSF/Estados UnidosUniversity of Wisconsin-Madison/[BE 5177/4-1]//Estados UnidosUniversidad de Costa Rica/[810-B3-273]/UCR/Costa RicaNational Institutes of Health/[GM066699]/NIH/Estados UnidosMarie Skłodowska-Curie Individual Fellowship/[ID 797969]/MSCA IF/BélgicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de Medicin

    Species-level predation network uncovers high prey specificity in a Neotropical army ant community

    Get PDF
    Army ants are among the top arthropod predators and considered keystone species in tropical ecosystems. During daily mass raids with many thousand workers, army ants hunt live prey, likely exerting strong top‐down control on prey species. Many tropical sites exhibit a high army ant species diversity (>20 species), suggesting that sympatric species partition the available prey niches. However, whether and to what extent this is achieved has not been intensively studied yet. We therefore conducted a large‐scale diet survey of a community of surface‐raiding army ants at La Selva Biological Station in Costa Rica. We systematically collected 3,262 prey items from eleven army ant species (genera Eciton, Nomamyrmex and Neivamyrmex). Prey items were classified as ant prey or non‐ant prey. The prey nearly exclusively consisted of other ants (98%), and most booty was ant brood (87%). Using morphological characters and DNA barcoding, we identified a total of 1,103 ant prey specimens to the species level. One hundred twenty‐nine ant species were detected among the army ant prey, representing about 30% of the known local ant diversity. Using weighted bipartite network analyses, we show that prey specialization in army ants is unexpectedly high and prey niche overlap very small. Besides food niche differentiation, we uncovered a spatiotemporal niche differentiation in army ant raid activity. We discuss competition‐driven multidimensional niche differentiation and predator–prey arms races as possible mechanisms underlying prey specialization in army ants. By combining systematic prey sampling with species‐level prey identification and network analyses, our integrative approach can guide future research by portraying how predator–prey interactions in complex communities can be reliably studied, even in cases where morphological prey identification is infeasible

    Plasticity of the Intrinsic Period of the Human Circadian Timing System

    Get PDF
    Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light (∼450 lux; ∼1.2 W/m2) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration
    corecore