

Supplemental Information S4

Species-level predation network uncovers high prey specificity in a Neotropical army ant community

Philipp O. Hoenle¹, Nico Blüthgen, Adrian Brückner, Daniel J. C. Kronauer, Brigitte Fiala, David A. Donoso, M. Alex Smith, Bryan Ospina Jara, Christoph von Beeren¹

¹Correspondence to:

Philipp Hönle: philipp.hoenle92@gmail.com

Christoph von Beeren: cvonbeeren@gmail.com

Content:

- Figure S1. Sampling effect in army ant-prey network.
- Figure S2. Collection events per time of the day.
- Figure S3. Prey composition.
- Figure S4. Distribution of COI barcode length fragments.
- Figure S5. Possible intraguild predation in Neivamyrmex.
- Table S1. COI forward and reverse primer combinations.
- Table S2. COI primers used in this study.
- Table S3. DNA barcode identification of non-ant prey.

Figure S1. Sampling effect in army ant-prey network. Influence of rarefaction of sampling effort on calculations of (A) network-level specialization H_2 ' and (B) modularity metric Q. The number of interactions has been reduced by randomly deleting one interaction per army ant species per deletion step. Black dot shows H_2 ' and Q of the original army ant-prey matrix, red dots the effect of down-sampling (50 randomizations per step).

Figure S2. Collection events per time of the day. Histogram showing the number of collection events per hour of the day. Details about the time of the day for each collection event and species is given in Supporting information S2.

Figure S3. Prey composition. Composition of developmental stages of ant prey items. Different shades of gray depict adult, egg, larva and pupal stages. Total number of ant prey items per species is shown in parentheses.

Figure S3. Possible intraguild predation in *Neivamyrmex.* We observed a case of possible intraguild predation at La Selva during the night of the 6th of April 2017 at 01:00h. *Neivamyrmex* cf. *iridescens* was swarming, seemingly uncoordinated, over a larger area. Workers carried their brood around and placed many of them in open brood caches. It first looked like an emigration to us, but less coordinated. Then we noted a second army ant species at the scene, *Neivamyrmex* cf. *swainsonii*. Smaller fights between both species were observed, and several *Ne.* cf. *swainsonii* workers carried away brood of *Ne.* cf. *iridescens*. Because we only observed this once, we cannot conclude with certainty that intraguild predation is a common behavior in this species. More detailed observations of the food habits in both species, *Neivamyrmex* cf. *swainsonii* and other *Neivamyrmex* species are urgently needed. Left: *Neivamyrmex* cf. *iridescens* with brood pile. Right: Fight of *Ne.* cf. *swainsonii* worker with *Ne.* cf. *iridescens* worker.

Table S1. *COI* forward and reverse primer combinations used in this study. Primer combinations with successful *COI* amplification are given for each ant genus. Primer combinations with most reliable *COI* amplification are marked with an asterisk and highlighted in bold. Annealing temperatures varied between 45°C and 55°C.

Ant genus	Primer combinations (Forward primer /reverse primer)			
Acanthognathus	LCO1490 / HCO2198			
Acromyrmex	LCO1532 / HCO2198*, LCO1532 / HCO1938, LCO1532 / AcromyR1			
Anochetus	dgLCO1490 / CrematoR1, LCO1490 / HCO2198* , LCO1490 / dgHCO2198, LepF1 / LepR1, MLepF1 / LepR1			
Aphaenogaster	LCO1490 / HCO2198			
Apterostigma	dgLCO1490 / CrematoR1, dgLCO1490 / dgHCO2198, LCO1490 / HCO2198*, LepF1 / LepR1			
Azteca	dgLCO1490 / AcromyR1, dgLCO1490 / CrematoR1, LCO1490 / HCO2198*			
Basiceros	LepF1 / LepR1			
Camponotus	CampoF2 / CampoR2, CampoF2 / dgHCO2198*, CampoF2 / HCO2198, dgLCO1490 / AcromyR1, dgLCO1490 / CrematoR1, dgLCO1490 / dgHCO2198, LCO1490 / HCO2198*, LCO1490 / dgHCO2198, MLepF1 / LepR1			
Crematogaster	dgLCO1490 / CrematoR1* , dgLCO1490 / LepR1, LCO1490 / CrematoR1, LepF1 / CrematoR1, LCO1490 / HCO2198, LepF1 / LepR1			
Cyphomyrmex	dgLCO1490 / CrematoR1*, LCO1490 / HCO2198*, LepF1 / LepR1			
Dolichoderus	LCO1490 / HCO2198			
Ectatomma	LCO1490 / HCO2198*, LepF1 / LepR1, MLepF1 / LepR1			
Gnamptogenys	dgLCO1490 / CrematoR1, LCO1490 / dgHCO2198, LCO1490 / HCO2198*, LepF1 / LepR1,			
Hypoponera	LCO1490 / HCO2198			
Mayaponera	dgLCO1490 / CrematoR1, LCO1490 / HCO2198*, LepF1 / LepR1			
Megalomyrmex	LCO1490 / HCO2198			
Neoponera	CampoF2 / dgHCO2198, dgLCO1490 / CrematoR1, LCO1490 / dgHCO2198, LCO1490 / HCO2198*, LepF1 / LepR1, MLepF1 / LepR1			
Nylanderia	CampoF2 / dgHCO2198, dgLCO1490 / CrematoR1*, LCO1490 / HCO2198*, LepF1 / LepR1			
Odontomachus	CampoF2 / dgHCO2198, dgLCO1490 / CrematoR1, LCO1490 / dgHCO2198, LCO1490 / HCO2198*, LepF1 / LepR1			
Pachycondyla	dgLCO1490 / CrematoR1, LCO1490 / dgHCO2198*, LCO1490 / HCO2198*, LepF1 / LepR1, MLepF1 / LepR1,			
Pheidole	dgLCO1490 / AcromyR1, dgLCO1490 / CrematoR1, LCO1490 / HCO2198*, LCO1490 / dgHCO2198, LepF1 / LepR1, MLepF1 / LepR1, MLepF1 / dgHCO2198			
Platythyrea	LCO1490 / HCO2198*, LepF1 / LepR1, MLepF1 / LepR1			
Sericomyrmex	LepF1 / LepR1, MLepF1 / LepR1*			
Solenopsis	dgLCO1490 / CrematoR1, LCO1490 / HCO2198			
Strumigenys	dgLCO1490 / CrematoR1*, MLepF1 / LepR1, LCO1490 / dgHCO2198, LCO1490 / HCO2198*			
Tapinoma	LCO1490 / HCO2198			
Trachymyrmex	dgLCO1490 / CrematoR1, LCO1490 / dgHCO2198, LCO1490 / HCO2198*, MLepF1 / LepR1			
Wasmannia	dgLCO1490 / CrematoR1, LCO1490 / HCO2198*			

Table S2. COI primers used in this study.

Primer name	Forward/	Sequence (5' –3')	Source
	reverse primer		
AcromyR1	Reverse	CTCCGGCAAGAACGRGRAGGGAAAGRA	This study
CampoF2	Forward	TTTGCAATYTGATCWGGWATAATTGGATC	This study
CampoR2	Reverse	CCYCCYCCBGAWGGRTCRAARAA	This study
CrematoR1	Reverse	GGRTCTCCYCCTCCDGMDGGRTC	This study
dgLCO1490	Forward	GGTCAACAAATCATAAAGAYATYGG	[1]
dgHCO2198	Reverse	TAAACTTCAGGGTGACCAAARAAYCA	[1]
LCO1490	Forward	GGTCAACAAATCATAAAGATATTGG	[2]
LCO1532	Forward	TCAGGTATAGTAGGATCTGCCA	C. Rabeling
HCO1938	Reverse	GCACCAAGAATGGATGATATACCTGC	C. Rabeling
HCO2198	Reverse	TAAACTTCAGGGTGACCAAAAAATCA	[2]
LepF1	Forward	ATTCAACCAATCATAAAGATATTGG	[3, 4]
LepR1	Reverse	TAAACTTCTGGATGTCCAAAAAATCA	[3, 4]
MLepF1	Forward	GCTTTCCCACGAATAAATAATA	[4]

References

- 1. Meyer CP. Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. *Biological Journal of the Linnean Society*. 2003;79:401–459.
- 2. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial *cytochrome c oxidase subunit I* from diverse metazoan invertebrates. *Mol Marine Biol Biotechnol*. 1994;3:294–9.
- 3. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly *Astraptes fulgerator*. *PNAS*. 2004;101:14812–7.
- Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. DNA barcodes distinguish species of tropical Lepidoptera. *Proceedings of the National Academy of Sciences of the United States of America*. 2006;103:968–971.

Table S3. DNA barcode identification of non-ant prey. Non-ant barcodes were compared to the reference library of the 'Barcode of Life Data' System (BOLD) in September 2018. GenBank accession numbers of non-ant barcodes are given in Supporting information S2. We added several non-ant prey items that we obtained from a preliminary study about army ant diets at the same collection site (all sample IDs starting with the code 'cvb'; for details see Supporting information S2).

Sample ID	Best hit in BOLD	Order	Family	Similarity to reference	GenBank/BO LD number	Collected from
				[%]		
PH_EB58_ca_1_02	Metapolybia cingulata	Hymenoptera	Vespidae	92.59	GU596904	Eciton burchellii
PH_EB58_undet_np_03	Synoeca septentrionalis	Hymenoptera	Vespidae	92.76	Early release	Eciton burchellii
PH_EB64_nonant_l_05	Scolopocryptops mexicanus	Scolopendromorpha	Scolopocryptopidae	84.56	JX422679	Eciton burchellii
cvb777prey022	Digiteps indicus	Scolopendromorpha	Scolopendridae	84.26	JX531857	Eciton burchellii
cvb777prey006	Rhiginia cinctiventris	Hemiptera	Reduviidae	99.37	CNCHB1508	Eciton burchellii
cvb777prey015	Labiduridae	Dermaptera	Labiduridae	87.93	Private	Eciton burchellii
cvb709prey003	Blattodea	Blattodea	n.a.	83.75	Private	Eciton burchellii
cvb709prey001	Eublaberus posticus	Blattodea	Blaberidae	91.39	MF136388	Eciton burchellii
cvb708prey002	Ectobiidae	Blattodea	Ectobiidae	99.66	Private	Eciton burchellii
cvb777prey013	Scaraberiidae	Coleoptera	Scaraberiidae	90.10	Private	Eciton burchellii
cvb777prey014	Carabidae	Coleoptera	Carabidae	100.00	Private	Eciton burchellii
cvb777prey004	Fulgoridae	Hemiptera	Fulgoridae	100.00	Private	Eciton burchellii
cvb595prey002	Panchlora sp. CC-2017	Blattodea	Blaberidae	98.31	KY741983	Eciton dulcium
PH EH60 undet 1 02	Phoridae	Diptera	Phoridae	98.63	Early release	Eciton hamatum
cvb011prey004	Ugyops	Hemiptera	Delphacidae	79.47	Early release	Eciton hamatum
cvb400prey001	Protopolybia	Hymenoptera	Vespidae	89.09	AY918914	Eciton hamatum
PH_EL34m_ca_l_01	Synoeca septentrionalis	Hymenoptera	Vespidae	93.37	Early release	Eciton lucanoides
PH_EM49_ec_1_03	Metapolybia cingulata	Hymenoptera	Vespidae	92.79	GU596904	Eciton mexicanum