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INTRODUCTION
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Abstract

The transmission of microbial symbionts across animal species could
strongly affect their biology and evolution, but our understanding of trans-
mission patterns and dynamics is limited. Army ants (Formicidae: Dorylinae)
and their hundreds of closely associated insect guest species (myrmeco-
philes) can provide unique insights into interspecific microbial symbiont
sharing. Here, we compared the microbiota of workers and larvae of the
army ant Eciton burchellii with those of 13 myrmecophile beetle species
using 16S rRNA amplicon sequencing. We found that the previously charac-
terized specialized bacterial symbionts of army ant workers were largely
absent from ant larvae and myrmecophiles, whose microbial communities
were usually dominated by Rickettsia, Wolbachia, Rickettsiella and/or Weis-
sella. Strikingly, different species of myrmecophiles and ant larvae often
shared identical 16S rRNA genotypes of these common bacteria. Protein-
coding gene sequences confirmed the close relationship of Weissella
strains colonizing army ant larvae, some workers and several myrmecophile
species. Unexpectedly, these strains were also similar to strains infecting
dissimilar animals inhabiting very different habitats: trout and whales.
Together, our data show that closely interacting species can share much of
their microbiota, and some versatile microbial species can inhabit and pos-
sibly transmit across a diverse range of hosts and environments.

et al., 2017). The effects of symbiotic microbial strains
on hosts range from positive nutritive or defensive inter-
actions to harmful parasitic or pathogenic relationships

roles in animal ecology and evolution (McFall-Ngai
et al., 2013). Symbiotic microbes have enabled the
emergence and evolutionary success of multiple host
clades and species and strongly affected individual
host fithess and population dynamics (Fisher

(Berg et al., 2020). These effects vary across host and
microbial symbiont genotypes and environmental con-
ditions (Sze et al., 2020).

There are relatively clear differences among the
functional categories of symbiotic microbes: closed,
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mixed and open (Perreau & Moran, 2021). Closed sym-
bioses include microbes transmitted strictly vertically
(maternally) across host generations. They include obli-
gate intracellular symbionts of insects that feed on
nutritionally incomplete diets and require supplementa-
tion with essential amino acids and vitamins (Bennett &
Moran, 2015; Rio et al.,, 2016). Microbes that form
mixed symbioses, in addition to utilizing vertical trans-
mission, can also transmit horizontally, that is, move
among non-relatives within and across host species.
This symbiont category includes facultative endosymbi-
otic bacteria such as Wolbachia (Kaur et al., 2021),
ranging in their effects on insects from beneficial to del-
eterious, depending on conditions. In the third major
category, open symbioses, exemplified by most gut
microbes, symbiont cells are generally transmitted
through the environment. While primarily linked to nutri-
tion, gut microbiota also play other critical roles, such
as protection against parasites and pathogens or
influencing development (Engel & Moran, 2013).

The factors shaping the establishment of microbial
symbioses across different host species are not well
understood, with research strongly biased toward verte-
brate and especially mammalian systems and their
‘open’ symbioses (Petersen & Osvatic, 2018). How-
ever, in taxa such as insects, it may be more common
to find microbes that establish mixed or closed relation-
ships. How the microbial symbionts are transmitted
across individuals of a species largely determines
opportunities for their interspecific transfer. In mam-
mals, the acquisition of microbes needed for develop-
ment or survival mostly occurs during birth and early
life through a shared environment with family members
(Campos-Cerda & Bohannan, 2020; Ferretti
et al.,, 2018; Moeller et al., 2018). In insects, mecha-
nisms for symbiont maternal transmission have evolved
repeatedly and include transovarial transmission, the
deposition of symbiont-containing capsules, egg
smearing with faecal matter (Ohbayashi et al., 2020) or
manipulating nest materials (Shukla et al., 2018). On
the other hand, social behaviour is also important, par-
ticularly for the transmission of gut microbiota. Through
shared environment, shared food sources or feeding
habits (e.g., coprophagy or trophallaxis), microbial com-
munities of social animals more closely resemble those
of the other members of their own social group (colony,
family, herd, etc.) than those of other groups (Bo
et al., 2020; Brito et al., 2019; Engel & Moran, 2013;
Sarkar et al., 2020).

Sharing the same environment by different species
may provide opportunities for interspecific transmission
of gut microbes. The similarities in microbial community
composition between humans and their pet dogs (Song
et al., 2013) serve as a good example. Likewise, there
are reports of microbe sharing across interacting insect
species. The similarities in gut microbiota composition
between fungus-growing ants and their social parasites

in another ant genus were explained by nest space and
food sharing or predatory behaviour (Liberti et al., 2015).
Also, it has been shown that velvety tree ants and their
myrmecophiles have similarities in microbiota composi-
tion (Perry et al., 2021). On the other hand, many insects
lack abundant gut microbiota, and many of the microbes
found in their digestive tracts may belong to the ‘tran-
sient’ category, not forming stable associations with
hosts (Hammer et al., 2019). In at least some of these
cases, facultative endosymbionts dominate microbial
community profiles. The horizontal transmission of these
mixed symbionts may be more challenging, as they are
often unable to survive outside of the host environment;
at the same time, due to their often high abundance in
insect tissues, they may be easier to study. There are
reports of apparent transmission of Wolbachia from Dro-
sophila simulans to the parasitic wasp Leptopilina bou-
lardi (Heath et al., 1999), from prey to predator in the
case of mites and terrestrial isopods (Clec’h et al., 2013;
Hoy & Jeyaprakash, 2005) and from ants to kleptopara-
sitic ant crickets (Orthoptera: Myrmecophilidae) (Tseng
et al., 2020). Unfortunately, the limited resolution pro-
vided by most studies listed—that of 16S rRNA OTUs,
which can group strains separated by tens of millions of
years of evolution (Ochman et al.,, 1999), complicates
conclusions. Nevertheless, it appears that the likelihood
of interspecific transmission should correlate with the fre-
quency and intensity of the interactions among host
insect species.

Army ants (Formicidae: Dorylinae) in the genus Eci-
fon are a particularly interesting group from the social
interaction perspective (Kronauer, 2020). With each
colony numbering thousands to millions of workers,
these nomadic ants roam terrestrial habitats in search
of animal prey. They reproduce by dependent colony
founding: new colonies form by fission when a large
colony splits in two, each retaining a single queen
(Gotwald, 1995; Peeters & Ito, 2001; Schneirla, 1971).
These colonies host a diverse set of closely associated
invertebrate species collectively known as myrmeco-
philes (Gotwald, 1995; Kronauer, 2020; Rettenmeyer
et al.,, 2011; von Beeren et al., 2021a). Myrmecophile
insects, which include beetles, especially rove beetles
(family Staphylinidae) (Parker, 2016; von Beeren
et al., 2021a), vary in their level of integration and roles
in army ant colonies (Akre & Rettenmeyer, 1968;
Rettenmeyer, 1961; von Beeren et al., 2011, 2018,
2021b). Some myrmecophiles show elaborate adapta-
tions to cope with their predatory army ant hosts. For
instance, many inquiline species mimic the cuticular
hydrocarbon profile of their host ants to facilitate peace-
ful interactions (von Beeren et al., 2011, 2018, 2021b).
Furthermore, some species possess protective mor-
phologies against occasional ant  attacks
(Gotwald, 1995; von Beeren et al., 2021b), while others
mimic the ants’ body shape to achieve a high level of
social integration into the army ant society
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(Gotwald, 1995; Maruyama & Parker, 2017; von
Beeren et al., 2018). Other species usually show no
apparent adaptations to life with army ants and rather
resemble their free-living relatives. Typically, they either
inhabit the army ants’ refuse deposits (von Beeren
et al.,, 2023), are found during the ants’ raids or are
found loosely scattered in the leaf litter around army ant
bivouacs—mobile nests made of living ant workers’
bodies (Rettenmeyer, 1961).

These diverse interactions create opportunities for the
transmission of microbes among community members,
either directly between species or through their shared
social environment. However, despite the ecological
importance of army ants as keystone species in tropical
forests (Hoenle et al., 2019; Kronauer, 2020; Pérez-
Espona et al., 2018), we know relatively little about the
dynamics, specificity or sharing of their microbial symbi-
onts. It was shown that the microbiota of New World army
ant workers consist primarily of two specialized bacteria,
Unclassified Firmicutes and Unclassified Entomoplasma-
tales (Anderson et al., 2012; Funaro et al., 2011; Lukasik
et al., 2017; Mendoza-Guido et al., 2022), likely transmit-
ted socially across worker generations (Eukasik
et al., 2017). However, little is known about the microbial
associations of other community members, including
army ant larvae and myrmecophiles.

The goal of this project was to assess the degree of
microbial overlap across unrelated but cohabiting spe-
cies within colonies of the army ant Eciton burchellii
parvispinum Forel, 1899. Specifically, we compared the
microbiome of two beetle groups: (1) inquilines, repre-
senting species that live inside the temporary bivouac
nests of army ants and thus have frequent contact with
host ants; (2) outskirt inhabitants, consisting of scaven-
gers and predators that are found outside the bivouac
and have less contact with ants. We expected the first
group to have a more similar microbiome to host ants
due to their frequent physical contact with host workers.
We addressed this by sequencing 16S rRNA gene
amplicons for 105 beetles representing 13 species,
from eight different colonies from a Costa Rican mon-
tane forest site, in addition to ant workers and larvae.
We then tracked microbial clades and genotypes
across species and colonies. For the most broadly dis-
tributed microbial taxon, the genus Weissella
(Lactobacillales), we increased the resolution of strain
association analysis by sequencing a protein-coding
gene. By combining these data, we show substantial
overlap in microbial composition among different hosts.

EXPERIMENTAL PROCEDURES

Insect collection, identification and
classification

We sampled insects in July 2012 in the rainforest of
Monteverde, Costa Rica (Figure 1A, Table S2). From

raiding or emigration columns of eight Eciton burchellii
parvispinum colonies, we collected medium-sized ant
workers, myrmecophile beetles, and, in two cases,
army ant larvae. We also captured six presumably free-
living staphylinid beetles in leaf litter away from the
sampled army ant colonies. Upon collection, speci-
mens were immediately preserved in 95% ethanol and
stored at —20°C until processing. Nine myrmecophiles
from two morpho-species were starved for 24 h prior to
preservation in order to test the persistence of microbes
within myrmecophiles.

We had previously identified all ant colonies based
on the morphological characters of workers
(Longino, 2010) and the partial sequence of the mito-
chondrial cytochrome oxidase | (COl) gene (Lukasik
et al., 2017). Morphological characters and DNA bar-
codes were also used to identify myrmecophile beetles
(Appendix S1, Figure 1C). In short, specimens were
individually mounted and z-stack images were pro-
duced using a Leica Z16 APO stereomicroscope
equipped with a light dome, a Leica DFC450 camera
and the processing software Leica application suite
(version 4) at the Rockefeller University. Within a few
hours, specimens were placed back into ethanol and
stored at —20°C until DNA extraction. Using the latest
species identification keys for each morphospecies and
two recently published COI reference databases of Eci-
ton associates (von Beeren et al., 2021a; von Beeren
et al., 2023), we identified all myrmecophiles to the low-
est taxonomic level possible. In cases where we were
not able to identify the species, we added a morpho-
type designation to the taxon name to provide unique
identifiers (e.g., Ecitodonia ST-F). The species distribu-
tion across the sampled colonies is shown in
Figure 1B.

We categorized the collected myrmecophiles either
as inquilines or as outskirt inhabitants (Figure 1C). The
following species were categorized as inquilines as
they are known inhabitants of army ant bivouacs
(Akre & Rettenmeyer, 1966, 1968; Rettenmeyer, 1961;
von Beeren et al, 2021a; von Beeren &
Tishechkin, 2017): Ecitophya cf. simulans (ant-
mimicking rove beetle), Ecitomorpha cf. melanotica
(ant-mimicking rove beetle), Ecitomorpha
cf. nevermanni (ant-mimicking rove beetle), Cephalo-
plectus mus (feather-winged beetle, protective mor-
phology), Euxenister cf. caroli (histerid beetle,
protective morphology) and Symphilister cf. hamati
(histerid beetle, protective morphology). The species
Colonides cf. collegii (histerid beetle, protective mor-
phology) was also classified as a bivouac inhabitant,
although no direct observation exists. This is because
histerid beetles that participate as hitchhikers in army
ant colony emigrations are usually also present within
the army ants’ bivouacs (von Beeren et al., 2021a; von
Beeren & Tishechkin, 2017).

Outskirt inhabitants were those myrmecophiles that
usually had no access to the inner part of army ant
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OUTSKIRT INHABITANTS

( ) ( ) Ecitodonia sp. ST-F (ST-F) aff. Meronera ST-G (ST-G) False Lomechusini sp.2 (ST-C)
Monteverde False Lomechusini ST-E (ST-E) aff. Pridonius (ST-1)
Ecitophya cf. simulans (ST-D)
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FIGURE 1 The origin and diversity of the studied myrmecophiles. (A) The sampling location; (B) A maximum-likelihood tree for
myrmecophile beetle species used in this study, based on a 658 bp portion of the mitochondrial cytochrome oxidase | (COl) gene. Bars
represent the number of specimens per colony, which is represented by different colours, representing 13 species or ant workers/larvae,
obtained from different E. burchellii colonies. In the tree, bootstrap support values >60% are shown. We did not obtain a clean sequence for
species HIST-C, hence it is not included in the tree. Colours of species labels in the tree represent the functional category the insects belong
to. (C) Representative specimens of 12 myrmecophile species. Scale bars represent 1 mm. We did not obtain a picture of the species labelled

ST-H.

bivouacs. For the herein-studied species, little to no
information on their basic biology is available. We thus
inferred their loose association with host ants using
information on related species, often of the same genus
and/or we additionally used unpublished data about the
beetle fauna inhabiting Eciton burchellii foreli refuse
deposits (von Beeren et al., 2023). As a result, we cate-
gorized the following species as outskirt inhabitants:
Ecitodonia ST-F (rove beetle, genus includes refuse
visitors; Akre & Rettenmeyer, 1966), aff. Meronera
ST-G (rove beetle, genus includes refuse visitors;
unpublished data, von Beeren et al., 2023), False
Lomechusini ST-C (rove beetle, related species is a
refuse visitor; von Beeren et al., 2023), False
Lomechusini ST-E (rove beetle, related species is a
refuse visitor; von Beeren et al., 2023), aff. Pridonius
ST-I (rove beetle, the genus includes refuse visitors;
von Beeren et al., 2023).

Microbial symbiont screens and amplicon
library preparation

Prior to DNA extraction, all insects were surface-
sterilised through 1-min immersion in 1% bleach, fol-
lowed by rinsing with molecular-grade water. We
extracted DNA from dissected gasters (for ant workers)
or whole specimens (larvae, beetles) using DNeasy
Blood and Tissue kits (Qiagen Ltd.), following the proto-
col for Gram-positive bacteria. The DNA extractions
were used for PCR reactions with the universal primers
9Fa and 907R (bukasik et al., 2017; Russell
et al., 2009) for the bacterial 16S rRNA gene and LCO-
1490 and HCO-2198 (Folmer et al., 1994) for the COI
gene of ants and myrmecophiles. PCR reaction condi-
tions were described previously (Lukasik et al., 2017).
The 16S rRNA gene amplification success, assumed to
correlate with the bacterial abundance in the sample,
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was estimated by comparing the brightness of bands in
an agarose gel against negative extraction controls. If
the brightness of 16S rRNA bands was comparable to
or lower than that of these negative controls, such sam-
ples were not processed further.

DNA samples that were classified as having sub-
stantial bacterial load were submitted, to Argonne
National Laboratory for the preparation of amplicon
libraries and subsequent sequencing of the V4
hypervariable region of the 16S rRNA gene (primers:
515F-806R), following the Earth Microbiome Project
protocols (Caporaso et al., 2012). Paired-end 150 bp
sequencing was performed on an lllumina MiSeq plat-
form. Along with insect DNA samples, six extraction
blanks and three blanks consisting of molecular-grade
water were sequenced to aid in identifying contami-
nants. Most of the samples used in this study (107/144)
were submitted at the same time, but a subset, includ-
ing all workers, were sequenced across four separate
batches (Table S1). The analytical workflow used,
including careful contamination filtering (described fur-
ther) and our focus on high-abundance OTUs and
genotypes, should have limited the batch effect (Salter
et al., 2014).

Microbiota data analysis

The amplicon data were analysed using a custom pro-
tocol combining vsearch and usearch with custom
Python scripts, described in detail at https://github.com/
catesval/army_ant_myrmecophiles. All steps up to
sequence clustering (inclusive) were performed individ-
ually for each library, given our previous findings that
unoise3 can erroneously exclude genotypes abundant
in some individuals but rare in the whole dataset
(Prodan et al., 2020). Briefly, after extracting reads cor-
responding to the experimental libraries from the
sequencing runs and adding data for previously charac-
terized ant specimens (bukasik et al.,, 2017), we
quality-filtered and merged overlapping reads from
each pair into contigs using PEAR v0.9.11 (Zhang
et al., 2014). We performed dereplication using vsearch
v2.15.2_linux_x86_64 (Rognes et al, 2016) and
denoising  with usearch  v11.0.667_i86linux32
(Edgar, 2010; Edgar et al., 2011). Samples were
denoised individually, given our previous findings that
unoise3 can erroneously exclude genotypes abundant
in some individuals but rare in the whole dataset. In this
step, we used a lower minisize parameter than recom-
mended (1 instead of 8) in order to conserve the diver-
sity found in low-total-read-count negative controls,
needed for subsequent decontamination, and because
we focused analyses on abundant genotypes anyway.
Then, the resulting lists of unique sequence variants
(further referred to as zero-radius Operational Taxo-
nomic Units or zOTUs) for each library were merged.

We then performed OTU picking and chimera removal
using the uparse algorithm incorporated in the usearch
software, with default parameters. Next, taxonomy was
assigned using the syntax function in vsearch (with a
cutoff of 0.80), using the SILVA SSU 138 database as
a reference (Quast et al., 2013). Finally, we used cus-
tom scripts to merge the outputs of OTU picking and
taxonomy assignment to create the OTU and zOTU
tables. The parameters of all analyses and all scripts
are provided in the GitHub repository linked above.

As shown previously, contamination during sample
processing can strongly alter the microbial community
profiles of organisms with less abundant microbiota,
including some army ants (Lukasik et al., 2017; Salter
et al., 2014). Because of this, we screened and filtered
putative contaminant genotypes, identified based on
their relative abundance in libraries representing insect
samples and negative controls. We adapted and
expanded the custom approach explained previously
(Eukasik et al., 2017), as described in detail in the
GitHub repository. While this approach should effec-
tively eliminate contaminants, its downside is the possi-
ble exclusion of rare symbiotic microbes. However, in
our analyses, we focused on abundant and widespread
microbes. Specifically, we selected for more detailed
investigation those 97% OTUs that fulfilled at least two
of the following three criteria: the average relative abun-
dance of the OTU was equal to or higher than 0.0001 in
at least 20 samples; its relative abundance in at least
one sample was 20.05; or its average relative abun-
dance was 0.01.

For the calculation of the genotype-level composi-
tion (zOTU) of the OTUs, we calculated what percent-
age of each 97% OTU was represented by different
zOTUs, and then filtered zOTUs to keep only those
represented in the dataset by at least 100 reads and
representing at least 5% of reads classified to an OTU
in at least one sample. The final data, managed using
Microsoft Excel, were visualized using the pheatmap
library (Kolde, 2019) in R version 3.6.3 (2020-02-29).
The degree of similarity in the microbiome community
of inquilines and outskirt inhabitants to the microbiome
of their host ants was explored using a principal coordi-
nates analysis based on compositional microbiome
data. Differences between four categories (ant worker,
ant larvae, inquilines and outskirt inhabitants) were
assessed using PERMANOVA with 1000 permutations
and testing the nested effect of species in the case of
myrmecophiles. Statistical analyses were performed
using the Vegan package version 2.5.7 (Oksanen
et al., 2020).

We did not rarefy the data before comparisons
among samples, given our strong focus on taxa abun-
dant in the dataset and samples, strict relative
abundance thresholds applied and demonstrated lim-
ited effects of the procedure on diversity comparisons
(McMurdie & Holmes, 2014; Willis, 2019).
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FIGURE 2 The relative abundance of the bacterial 97% OTUs in specimens of E. burchellii workers, larvae and 13 myrmecophile species
from eight ant colonies from Monteverde, and a few free-living staphylinids. Columns represent insect specimens divided into species, ordered
based on COI ML tree and labelled on top with the abbreviation assigned in Figure 1; background shading represents the functional categories.
Rows represent bacterial OTUs sorted according to ML phylogeny for their representative genotypes. The colour gradient represents the relative

abundance of each OTU in each of the insect specimens.

rpIB genotype-level diversity of Weissella

To obtain additional insights into the diversity of Weis-
sella, one of the most broadly distributed microbial sym-
bionts in our dataset, we amplified and sequenced a
portion of the 50S ribosomal protein L2 (rp/B) gene from
51 Monteverde specimens in which the microbe was
present (Figure 2, Figure 3A and Table S4). Addition-
ally, 31 samples from other army ant species and col-
lection sites that were not a part of the primary dataset
but tested positive for Weissella based on specific PCR
primers or amplicon data (Lukasik et al., 2017), were
included for rpIB sequencing. To achieve this, we used
newly designed primers within the rp/B and the adja-
cent rpsS gene: ArWei_rpIB_F3: GGTCGTCGTAATAT-
GACTGGT, Leu_rpsS_RS3:
TGAACGACGTGACCATGTCTTG and Wei_RpsS_R-
seq: CTTCAACCTTCTTCTTCAACAACAAGYKRGC.
The PCR program was: 94°C for 1 min, 25 cycles of
95°C for 15, 70°C—>62.8°C (decreasing by 0.3°C
each cycle) for 15's, 72°C for 20 s; 35 cycles of 94°C
for 15's, 58°C for 15's, 72°C for 20 s; 70°C for 2 min.
Purified PCR products were Sanger-sequenced by
Eurofins Genomics LLC. The rp/B sequences obtained
after trimming traces immediately after the stop codon,
thus removing intergenic regions and short rpsS frag-
ments had a length of 510-bp. They were aligned

against homologues identified in the NCBI database
through BLASTn searches (Table S6).

Phylogenetic analyses

We quality-checked and aligned all insect COI
sequences as well as all Weissella rplB sequences in
CodonCode Aligner v. 9.0.1 (CodonCode Corporation,
Centerville, MA, U.S.A.) and manually curated the
alignments. Then, we performed Maximum Likelihood
phylogenetic analysis in MEGAX (Kumar et al., 2017),
utilizing the GTR model with gamma-distributed rates
and invariant sites (G + 1), 5 discrete gamma catego-
ries and 1000 bootstrap replicates. Trees were visual-
ized using TreeGraph (Stover & Miuller, 2010). The
insect COI tree is unrooted, while the Weissella rplB
tree was rooted using Leuconostoc carnosum and Leu-
conostoc paramesenteroides as outgroups.

RESULTS
Species identification and phylogeny

We combined previously obtained COI sequences with
new high-quality COI sequences for all ant larvae, for
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(A) Relative abundance of selected 97% OTUs across ant and myrmecophile individuals.
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(A) The relative abundance of selected, broadly distributed and abundant bacterial 97% OTUs across ant and myrmecophile

individuals, relative to the total number of reads in a sample. Associations between colours and bacterial OTUs are shown in panel B. B) Relative
abundance of 16S rRNA genotypes within each of these selected OTUs. In both panels, individual insects are represented by columns and
sorted by species, as in Figure 2. Data for a given OTU is shown only for those individuals where the relative abundance of that OTU in an
individual is at least 0.001 (the same threshold was applied in Figure 2), helping reduce the impact of potential cross-contamination. In panel B,
only the genotypes with a total of at least 100 reads and a relative abundance >0.05 of the OTU in at least one sample are shown, and others
were ignored for the purpose of this comparison; consequently, the cumulative relative abundance of all genotypes shown is 1.00 for each OTU

in each individual.

89 of the 96 myrmecophile beetles and for 5 out of
6 free-living beetle specimens. In most of the remaining
cases, the noisier barcode sequences closely resem-
bled some of the clean sequences, allowing for speci-
men classification. Seven sequences matched either
amphipod or nematode sequences, presumed food or
parasites. We made a note of this to check if these CO/
signals had some influence on the results from the 16S
rRNA sequence analysis. These specimens were clas-
sified based on morphology (see Tables S1 and S3
and Appendix S1, for details).

Based on these data, we concluded that our collec-
tion comprised 13 myrmecophile species from three
families: Staphylinidae, Ptilidae and Histeridae
(Figure 1). The four free-living beetle species belonged
to the family Staphylinidae. High-quality, unambiguous
sequences of representative specimens from each of
the species were used for the phylogenetic reconstruc-
tion of the relationships among myrmecophiles, with
the exception of HIST-C, for which we were not able to
obtain a high-quality sequence (Figure 1B). Overall, by
combining barcoding and morphology information we
obtained the critical framework for correlating

microbiota similarity and distribution across multi-
species ant-myrmecophile communities. However, the
taxonomic identification of the myrmecophile species
bins was challenging. In the Appendix S1, we explain
how we assigned taxonomic IDs through the compari-
son of COI barcode sequences and morphological fea-
tures with myrmecophiles of the more comprehensively
studied E. burchellii foreli subspecies.

Microbial community composition

After quality filtering, decontamination and removal of
negative controls, the 16S rRNA amplicon sequencing
dataset comprised 135 libraries, with a median of
20,346 reads (range 1367-69,222). After denoising
and decontamination, we obtained 5603 microbial
genotypes (zOTUs), which were grouped into 1656
Operational Taxonomic Units (OTUs) at 97% identity.
Of those, 28 OTUs, comprising a summed average of
85% of filtered reads per sequence library, were
selected for more detailed analysis according to the cri-
teria specified in the Methods (Figure 2).
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FIGURE 4 Bray—Curtis dissimilarity pairwise comparison, at the level of 97% bacterial OTUs, among samples from each species versus all
other samples, from all colonies and species. Each dot represents the distance between two samples, of the same (red) or different species
(black), and the title and background colour indicate the functional group they belong to. Self-comparisons are not shown, and so the within-
species comparisons are lacking for some species. The boxes show 25%, 50% (median) and 75% inter-quartile ranges. Metrics were calculated
using the Phyloseq 1.30.0 and Vegan 2.6-2 packages and visualized using ggplot2 3.4.0, in R version 3.6.3.

Results for Eciton burchellii workers—based on a
partially overlapping sample set—resembled prior
observations (Lukasik et al., 2017). Their microbiota
were dominated by Unclassified Firmicutes (OTU4) and
Unclassified Entomoplasmataceae (OTU7), two bacte-
rial clades identified as stable residents of army ant gut
habitats (Funaro et al., 2011; Lukasik et al., 2017). The
OTUs corresponding to these bacteria comprised, on
average, 35% and 32% of E. burchelli worker
sequence libraries, being present in 19 or 22 of the
23 characterized workers, respectively. However, both
these bacteria were rare across larvae, with Unclassi-
fied Firmicutes (OTU4) present in four of 10 individuals,
with an average relative abundance of 0.29% for those
infected (Figure 2). Further, reads assigned to these
OTUs were rare across myrmecophiles, generally not
exceeding the level expected from cross-contamination
in MiSeq lanes dominated by army ant libraries
(INumina, 2017). Few other microbes were abundant/
common within or among E. burchellii worker libraries.
Among the exceptions were Weissella (Lactobacillales)

(OTU2), Tokpelaia (Rhizobiales) (OTU11), and an
unclassified clade in the order Micrococcales (OTU13),
all found sporadically across workers.

The symbiotic microbiota of Eciton burchellii larvae
were clearly different from worker-associated micro-
biota (ADONIS, F431) = 17.146, p <0.001; Figures 2
and 4; note that in the comparison we did not use col-
ony information, as both workers and larvae were avail-
able from one colony only). The dominant 97% OTU,
Weissella (OTUZ2), accounted for 73% of reads on aver-
age across the larval libraries. The second most abun-
dant member of the larval microbiota was Rickettsiella
(Gammaproteobacteria: Legionellales) (OTU10), pre-
sent in 6 out of 10 larvae, with an average relative
abundance of 10% for those infected. OTUs represent-
ing the genera Enterococcus (OTU12) and Lactococ-
cus (OTU17) numbered among those with sporadic
presence and low abundance in E. burchellii larvae.

Microbial communities of myrmecophile beetles
showed species-specific patterns (Figure 2). Across all
species, the bacterial 97% OTU that was most
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abundant on average among samples where it was
present corresponded to the alphaproteobacterial
genus Rickettsia (OTU1), which represented an aver-
age of 15% of the reads in those libraries where it was
present and had a relative abundance >0.1% in 46 of
96 libraries. Other abundant and widespread bacteria
included the aforementioned Weissella OTU2, compris-
ing 14% of the total reads on average among libraries
where it was found and present in 51 libraries. Reads
clustering within a single Rickettsiella OTU (OTU10,
the one also found in army ant larvae) made up 6% of
reads per library on average where present and was
found in 34 libraries. Wolbachia was represented by
two OTUs; OTU5 was present in 15 libraries with an
average relative abundance of 8% among them and
OTU3—found at 12% average relative abundance
where present, and appearing in 26 libraries. Other
bacteria exceeding 1% average relative abundance in
the dataset included Spiroplasma (Mollicutes) (OTU14,
OTU15, OTU16), Firmicutes: Floricoccus (OTU21),
Enterococcus (OTU12) and Pseudomonadota: Candi-
datus Lariskella (OTUG), Yersiniaceae (OTU33) and
Enterobacterales (OTU28).

Some of these myrmecophile-associated microbes
were highly species-specific. For example, OTU6 clas-
sified as Lariskella was abundant in about half of the
Cephaloplectus mus (CEP) beetle specimens but virtu-
ally absent in all other samples. However, other micro-
bial OTUs abundant in the dataset were observed in
multiple host species. This was particularly clear for
Weissella OTU2, occurring in all 12 myrmecophile spe-
cies, in addition to army ant worker and larvae libraries.
In eight of these 12 myrmecophile species, this OTU
was present with a relative abundance of 5% or higher
in at least one individual. Likewise, Rickettsiella OTU10
was present in 11 myrmecophile species in addition to
army ant larvae. Many other bacteria were found in
more than one beetle species but not in army ant
workers or larvae. Among them were a 97% OTU1
classified as Rickettsia, present in seven myrmecophile
species and two Wolbachia OTUs, present in seven
(OTU3) and five (OTU5) myrmecophile species
(Figure 4 and Figure 3A). Overall, we observed signifi-
cant differences in microbial community composition
between workers and myrmecophiles (ADONIS,
F1,116) = 14.521, p < 0.001, Figure 4) and between lar-
vae and myrmecophiles (ADONIS, F4 103 = 7.615,
p <0.001), when only using category as a variable,
without considering colony information. The differences
among myrmecophile species and between the two
functional categories they were grouped in, indepen-
dent of colony, were also significant (ADONIS, with the
effect of species nested within category:
F(1,93) = 6.576, p < 0.001 for category, F(10’83) =5.972,
p < 0.001 for species). Note that inquiline and outskirt
staphylinids form separate clades and we cannot rule
out phylogenetic position driving some of the observed

differences. Nevertheless, communities of Eciton
burchellii larvae and some myrmecophile beetle spe-
cies often grouped together in the PCoA plots
(Figure S1) and had typically lower Bray—Curtis dissimi-
larity values (Figure 4) when compared against each
other rather than when compared with workers, being
dominated by the same microbial OTUs (Figure 2). We
found no difference in microbiome composition among
individuals of two myrmecophile species that were
immediately preserved or starved for 24 h prior to pres-
ervation (PERMANOVA, F4 11y = 1.3296, p < 0.217 for
False Lomechusini sp.2 (ST-C) and F4 2 = 0.64155,
p < 0.636, Figure S2A, B). Likewise, the microbial com-
position of individuals whose COIl barcode matched
putative prey or parasites did not stand out from other
representatives of the same morphologically identified
species (Figure 2).

Some of the microorganisms detected in myrmeco-
phile beetles were also found in free-living beetles.
Among these, a single Enterococcus OTU (OTU12)
was the most prevalent, being present in five out of six
specimens in the latter category, with an average abun-
dance of 14% among the myrmecophile and free-living
beetle samples where it was present. This OTU was
also found, at low abundance, in six Eciton burchellii
larvae and 41 myrmecophile beetles from seven
species—primarily,  colony  outskirt inhabitants
(Figure 2). Aside from Enterococcus, Spiroplasma
(OTU14) was also found in three free-living specimens
and two myrmecophile species inhabiting colony out-
skirts (n = 12 specimens). These patterns resulted in
relatively greater similarity in microbial communities
between free-living staphylinids and those that inhabit
colony outskirts, relative to ants or inquiline species
(Figure 4). However, despite such trends for these
broadly distributed insect associates (Paniagua Voirol
et al., 2018; Russell et al., 2012), the abundant OTUs
shared among army ants and myrmecophiles were
generally not present in free-living, sympatric beetles.

16S rRNA genotype-level microbial
associations

Genotype-level 16S rRNA (zOTU) data provided more
detailed information about the diversity and distribution
of the symbiont strains within and across species
(Figure 3B), suggesting possible cases of recent trans-
fer of symbionts among host ants and their myrmeco-
philes. Across the 28 selected OTUs, we identified
between 1 and 13 genotypes that fulfilled the abun-
dance criteria that were likely to exclude sequencing
errors and cross-contaminants. These genotypes could
represent genomes of different strains or alternatively,
sequence variation among operons within a single
genome (Vétrovsky & Baldrian, 2013) and can provide
valuable novel insights into host-symbiont interactions
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(Kolasa et al., 2023). Two or more distinct genotypes
from a single OTU were often found in the same individ-
ual. At the same time, the same genotypes were found
in different species (Table S5) in all 24 97% OTUs
shared across two or more species. Within a single
host species, we observed up to eight different geno-
types of the same OTU (Table S4), but with no clear
distribution patterns across colonies (Figure 3A and
Figure 3B).

Genotype diversity varied among the most abun-
dant broadly distributed 97% OTUs (Figure 3B). Weis-
sella OTU2 had seven detected genotypes, followed by
Ricketsiella OTU10 with six genotypes, Rickettsia
OTU1 and Wolbachia OTU3 with two each, and Wolba-
chia OTU5, with one. Genotype diversity also varied
among host species. For example, in most myrmeco-
phile species, we identified two Weissella genotypes,
but aff. Meronera ST-G and Ecitodonia sp. ST-F speci-
mens possessed up to four. In most individual insects,
one genotype of Rickettsia was present, but in two Eci-
tomorpha cf. melanotica (ST-A) specimens and one aff.
Meronera ST-G specimen, we detected additional, low-
abundance genotypes. In the case of Wolbachia
OTU3, the same genotype was detected in almost all
infected insects, but one specimen of Cephaloplectus
mus (CEP) and one of False Lomechusini sp. 2 (ST-C)
hosted an alternative genotype. Finally, for Rickettsiella
(OTU10), most of the insects where this OTU was pre-
sent harboured only one of the six genotypes, but a
subset possessed two or three.

rpIB genotype-level diversity of Weissella

Sanger-sequencing of the protein-coding gene rpiB for
Weissella-positive specimens yielded 31 high-quality
and unambiguous sequences. For phylogenetic analy-
sis, we combined this dataset with newly generated
sequences for 11 workers and larvae from previously
characterized ant species or locations (from Lukasik
etal., 2017) and sequences extracted from 25 reference
genomes for other Weissella and other Leuconosto-
ceae/Lactobacillales strains. The resulting maximum
likelihood phylogeny provided highly supported infor-
mation on the relationships among the newly character-
ized strains, despite known limitations of single genes
relative to genome-level datasets in resolving deeper
nodes of the phylogeny (Fanelli et al., 2022).
Sequences from army ants and myrmecophiles fell into
two divergent broad clades (Figure 5). The more abun-
dant clade comprised two sub-clades. One sub-clade
included Weissella ceti, a species originally isolated
from a beaked whale carcass (Vela et al., 2011), sev-
eral isolates from diseased rainbow trout cultures that
were recently assigned to a separate species,
W. tructae (Figueiredo et al., 2015; Pereira
et al,, 2022), as well as a single sequence from a

myrmecophile  specimen  classified as False
Lomechusini sp. 2 (ST-C). The myrmecophile
sequence differed by only 3 bp (0.59%) from the
W. ceti type strain. However, most of the newly
obtained rplB sequences from ants and myrmecophiles
belonged to the second sub-clade, ca. 3% distinct from
these previously described Weissella isolates. The
other, divergent Weissella clade comprised sequences
from myrmecophiles and ant larvae exclusively.

Within these two broad clades, the sequences from
E. burchellii army ants and different myrmecophile spe-
cies were highly similar and often identical. The clade
that included W. ceti also included sequences from
nine myrmecophile species as well as army ant
workers and larvae. The two most abundant rp/B geno-
types within this clade were both represented by strains
from Monteverde E. burchellii workers and several myr-
mecophile species. Interestingly, one of these /B
genotypes was also found in E. burchellii workers and
larvae from Venezuela (Lukasik et al., 2017). The other
clade in our rp/B phylogeny included a genotype repre-
sented by sequences from four myrmecophile species
and from E. burchellii larvae from Monteverde and
Venezuela. Three identical sequences from
Venezuelan Nomamyrmex esenbeckii army ant larvae
represented a second, divergent genotype within that
second clade.

DISCUSSION

We have shown that phylogenetically distant and bio-
logically different insects living together within army ant
colonies share substantial portions of their microbiota:
they frequently harbour microbes with identical geno-
types at the V4 region of the 16S rRNA gene and, for
Weissella, also at a portion of the rplB gene. When
checking if these similarities were related to colony or
level of integration of the myrmecophiles with the ants
(inquilines vs. outskirt inhabitants), we did not find any
discernible patterns. We also found an overlap at the
Weissella 16S-V4 and rplB genotype level between dif-
ferent Eciton burchellii parvispinum colonies from
Costa Rica and Eciton burchelli foreli from
Venezuela—separated by ca. 2000 km and an esti-
mated four to seven million years of evolution (Lukasik
et al., 2017; Winston et al., 2017). As a reference, the
specialized and putatively worker-to-worker-transmitted
Firmicutes and Entomoplasmatales symbionts gener-
ally differ among these ant colonies by about 1% within
the same rplB gene (Lukasik et al., 2017). These pat-
terns strongly suggest that some microbes, and Weis-
sella in particular, are shared across interacting
species within colonies, and across geographically dis-
tant colonies of a species, at relatively short timescales.
The surprising relatedness of Weissella strains from
army ant colonies, and those isolated from divergent
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and physiologically dissimilar animals from completely = suggests its much broader distribution across host
different environments—beaked whale and rainbow organisms and environments. Then, our work highlights
trout (Figueiredo et al., 2015; Vela et al.,, 2011) the versatility of some microbial clades and strains and
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the extent and likely significance of microbial strain
transmission at multiple scales.

Army ant workers and larvae differ
substantially in their microbial community
composition

In our collection, we found little microbial symbiont
sharing between ant developmental stages. However,
there was only one colony for which we had samples
from both workers and larvae (PL028). For this colony,
the microbial communities of army ant larvae were dis-
tinct from those of adults. The ancient bacterial symbi-
onts that dominate worker communities, Unclassified
Firmicutes and Unclassified Entomoplasmatales
(Funaro et al., 2011; Lukasik et al., 2017), were present
in only one larva, at low abundance. Likewise, the dom-
inant larval symbionts, Weissella and Rickettsiella,
were uncommon in workers: Weissella was only pre-
sent in some specimens from a colony with no larvae
sampled and Rickettsiella was never detected. How-
ever, the consistent presence and high relative abun-
dance of these microbes in E. burchellii larvae from
Costa Rica, but also the presence of closely related
Weissella in E. burchellii and Nomamyrmex army ant
larvae from Venezuela, suggests persistent association
and likely importance, in larval biology (Lukasik
et al., 2017). In other social Hymenoptera, larval micro-
biota also differ from those of adults and can play
important roles. For example, in Cephalotes turtle ants,
microbiota change substantially as the larvae develop
(Hu et al., 2023), exhibiting a consistent successional
pattern of unknown functional importance. Likewise,
honeybee larval microbiota are very different from
those of adult bees and can play important roles
(Anderson et al., 2018; Kapheim et al., 2015; Martinson
et al., 2012). For example, a novel lactic acid bacterium
was shown to inhibit the growth of the pathogen Paeni-
bacillus larvae in honeybee larvae (Forsgren
et al., 2010). On the other hand, there is evidence that
microbes can be transmitted from adults to larvae
through social interactions, as shown for Atta and Acro-
myrmex leaf-cutter ants (Sapountzis et al., 2018;
Zhukova et al., 2017). More systematic sampling and
surveys of larval instars are necessary to clarify the sig-
nificance of microbes in ant developmental biology.

Microbial sharing among army ant colony
members

The striking degree of overlap in bacterial associations
among different myrmecophile species and between
myrmecophiles and army ant larvae suggests exten-
sive microbial sharing. In particular, Weissella and
Rickettsiella, two dominant larval associates, were both

present in a large share of myrmecophile specimens—
representing 13 and 12 species, respectively—both
inquilines and colony outskirt inhabitants. The identity
of 16S rRNA and (in the case of Weissella) rpIB
sequences among strains from different hosts conflicts
with their strong specialization on a particular host spe-
cies and instead, is highly suggestive of their ongoing
or recent horizontal transmission. At the same time, it is
likely that closely related strains found within army ant
colonies differ in their level of host-specificity and other
biological characteristics. For example, one of the myr-
mecophile species, Cephaloplectus mus (CEP), consis-
tently and uniquely hosted Weissella strains with about
0.5% rplB gene nucleotide sequence divergence, com-
pared to strains that colonized a wider range of species
(Figure 5). Several 16S rRNA genotypes of the faculta-
tive endosymbionts Wolbachia and Rickettsia are also
broadly distributed across different myrmecophile spe-
cies, and the same patterns seem to apply to most
other abundant bacterial OTUs in our dataset. How-
ever, it is important to emphasize that bacterial strains
identical to the sequenced 253-bp fragment of 16S
rRNA may still be separated by millions of years of evo-
lution and differ dramatically in genome contents and
the range of functions (Hassler et al., 2022; Ochman
et al., 1999). Conserved protein-coding genes such as
rplB provide greater phylogenetic resolution. However,
despite near-identity at the rp/B gene among strains
previously classified as W. ceti, higher divergence else-
where within the genomes combined with biochemical
differences were recently used to justify the delimitation
of W. tructae (Pereira et al., 2022). Unfortunately, we
currently lack the resolution to resolve the relationships
among strains detected in different myrmecophile
species or estimate transmission timing. While trans-
mission is likely to be ongoing in many cases, whole-
genome comparison among isolates from different host
species would provide the ultimate evidence.

Army ant colonies as arenas for
interspecific exchange of microbial
symbionts

Close and intensive interactions among army ants and
their diverse myrmecophile beetles could facilitate
microbial strain transmission across these species,
resulting in the observed patterns indicative of broad
host distribution of the dominant microbial strains. On
the other hand, we found no consistent patterns when
comparing the two functional categories (inquilines and
colony outskirt inhabitants) despite observed major dif-
ferences among species. While some OTUs found in
myrmecophiles and ants were also present in the few
sampled free-living staphylinids, the primary OTUs that
we identified as being shared among the community
members, Weissella, Rickettsiella, Wolbachia and
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Rickettsia, were not (Figure 2, Figure 3A
and Figure 3B). This is also evidenced when comparing
the microbial composition similarity among samples
grouped by species, where we see that Bray—Curtis
dissimilarity indexes for free-living beetles are generally
high (Figure 4). Thus, with their hundreds of associated
insect species and constant interactions among individ-
uals within bivouacs, army ant colonies appear to serve
as excellent arenas for interspecific microbial symbiont
exchange. Similarly, in velvety tree ant (Liometopum
occidentale) communities, ants and myrmecophiles
show similarities in their microbiota composition,
depending on their level of interaction (Perry
et al., 2021). As myrmecophiles can be found in nests
of several ant species (Danoff-Burg, 2008; Kronauer &
Pierce, 2011), the study of these relationships and their
influence on the microbiota of the species involved
could be of great importance to understanding microbe
sharing among insects and beyond.

The mechanisms of transmission among ant
workers, larvae, and their associated beetles are likely
to vary substantially among bacterial symbiont catego-
ries (Perreau & Moran, 2021). Bacteria that form ‘open’
symbioses, which include most gut symbionts, are
commonly acquired from or through the environment—
creating opportunities for different cohabiting insects to
acquire the same microbes from the same sources
within a colony. Sharing food sources, predation,
grooming and other social interactions create opportu-
nities for direct transfer of microbes from one host
insect to another. In the cases of Weissella and Rickett-
siella, it is tempting to assume that larvae are the pri-
mary sources of these microbes for other insects within
a colony. On the other hand, in Eciton burchellii army
ants, batches of larvae are synchronized and separated
by periods when no larvae are present within colonies,
preventing direct transmission from older to younger
larvae (Kronauer, 2020). Given the scarce presence of
these two microbes in workers, it becomes, alterna-
tively, tempting to postulate beetles as the source of
Weissella for new generations of larvae, despite limited
evidence for direct interactions between larvae and
most myrmecophile species. It is also possible that
army ant larvae are repeatedly inoculated with symbi-
otic microbes of prey insects, which in the case of
E. burchellii comprises primarily Camponotus brood
(Hoenle et al., 2019; Rettenmeyer et al., 1983); future
studies of prey species’ microbiota may verify this.
Whichever the ultimate source, through their close inte-
gration into colony biology, many myrmecophiles are
plausibly exposed to similar microbial inocula as those
encountered by army ant larvae, and it seems likely
that inoculation is not unidirectional.

Interspecific transmission of facultative endosymbi-
onts such as Wolbachia and Rickettsia is likely more
complicated than that of gut symbionts but still probably
facilitated within large colonies inhabited by multiple

potentially suitable hosts. To establish a novel infection,
heritable endosymbionts need to be physically trans-
ferred from body fluids of one insect to another, avoid
the immune system, establish means of transmission to
host reproductive tissue and across generations and
affect host fitness in ways that would prevent the rapid
clearing of the infection by natural selection (Bright &
Bulgheresi, 2010). It can be argued that at least the first
step in the process—opportunity for acquiring the new
infection—is facilitated among species that live closely
together and interact frequently and are exposed to
shared pools of external parasites or perhaps preying
on each other (Ahmed et al., 2015; Clec’h et al., 2013).
Wolbachia has been found in extracellular environ-
ments of attine ants (Andersen et al., 2012; Frost
et al, 2014), Drosophila melanogaster (Pietri
et al., 2016) and Nasutitermes arborum termites (Diouf
et al., 2018), among others, and while the viability of
the cells was not established, this might facilitate their
transmission. This could also be true for other microbes
thought to exist strictly as intracellular symbionts. There
is also evidence that the environment insects live in
might act as a reservoir of some microbes, with the
Wolbachia signal being detected in plant matter and
fungi (Li et al., 2017). However, other studies show that
cohabitation does not always result in microbiota simi-
larities, as is the case of some ant species and their tro-
phobiont mealybugs and aphids (lvens et al., 2018).

Broad distributions of bacterial clades that
infect ants and myrmecophiles

Several of the microbes abundant in army ant colonies
are distributed much more broadly. Wolbachia is esti-
mated to infect approximately half of all insect species,
many nematodes and other invertebrates (Kaur
et al., 2021). Likewise, Rickettsia infects diverse
insects, often forming persistent associations—
although some strains are only vectored by arthropods,
with plants or vertebrates as definitive hosts (McGinn &
Lamason, 2021). Rickettsiella is also known from
diverse arthropods, although the nature of these asso-
ciations is often unclear (Zchori-Fein & Bourtzis, 2012).

In contrast, the genus Weissella is not well-known
as an insect associate, despite some of the named spe-
cies being originally isolated from insects (Weissella
bombi from a bumblebee, Weissella cryptocerci from a
cockroach—Heo et al,, 2019; Praet et al.,, 2015).
Better-known species come from vertebrates
(e.g., Weissella confusa, human pathogen—Fairfax
et al., 2014; Kamboj et al., 2015) and fermented foods
(Weissella koreensis in kimchi, Weissella fabaris in fer-
mented cacao beans—Lee et al., 2002; Snauwaert
et al., 2013). The broad distribution of the genus Weis-
sella’s indicates its metabolic versatility, which, com-
bined with abundant opportunities for bacterial
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transmission across cohabiting species, may explain its
broad distribution in army ant colonies.

Explaining the close similarity of ant and myrmeco-
phile microbes to previously described strains of Weis-
sella cetiltructae, isolated from beaked whale (Vela
et al., 2011) and farmed rainbow trout (Castrejon-
Najera et al., 2018; Figueiredo et al., 2015; Pereira
et al., 2022), respectively, is more challenging. The lat-
ter is a well-documented virulent pathogen, but we
have no information on the biology of the former.
Regardless, the vertebrate species they were isolated
from are physiologically dissimilar and inhabit
completely different environments than army ants, and
opportunities for direct microbial exchange among them
must be extremely limited. Still, the close similarity
within the rplB protein-coding gene between strains
infecting fish, whales, ant larvae and some myrmeco-
phile beetles does indicate that the interspecific trans-
mission, likely through a long chain of other hosts or
habitats, must have occurred relatively recently or is
perhaps ongoing.

Such versatility may not be an unusual characteris-
tic of a bacterial genus. Species from the genus Lacto-
bacillus, for example, can be found in a wide range of
vertebrate and invertebrate hosts and also in fermented
plant and milk products (Zheng et al., 2020). Members
of the genera Enterobacter and Pseudomonas can also
be found in a broad spectrum of habitats, such as
plants, soil, aerosol and water, in addition to being
opportunistic pathogens or more commensal members
of the gut microbiota of vertebrates and invertebrates
(Grimont & Grimont, 2006; Silby et al., 2011). The Earth
Microbiome Project—the broadest microbial survey to
date—has reported many other bacterial clades broadly
distributed and abundant across environments, includ-
ing Bacillus, Enterobacteriaceae and Streptococcus
(Thompson et al., 2017); https://earthmicrobiome.org/).
But, we are far from understanding their ecological and
evolutionary relevance in different environments.

Biological properties and fithess effects as
a critical aspect of microbial transmission
and distribution

Depending on the nature of the association with their
hosts, symbiotic microorganisms vary in their fithess
effects, transmission propensity and evolutionary
potential. Facultative endosymbionts such as Rickett-
sia, Wolbachia and Spiroplasma have been traditionally
regarded as reproductive parasites, but more recent
research has revealed a range of functions that can
clearly benefit hosts, including the biosynthesis of nutri-
ents and protection against natural enemies (Kaur
et al., 2021; Lukasik et al., 2013; Nikoh et al., 2014;
Sapountzis et al., 2018). Through the combination of
reproductive manipulation and fitness benefits, new

infections with these microbes, likely initially acquired
from other species, have sometimes swept through
host populations (Himler et al., 2011; Jaenike
et al., 2010; Kriesner et al., 2013), with effects likely
reverberating in multi-species communities (Ferrari &
Vavre, 2011). At short timescales, such infections could
enable rapid response and adaptation to environmental
challenges, particularly relevant in the rapidly changing
world of the Anthropocene (Lemoine et al., 2020). At
longer timescales, they may facilitate and speed up
speciation (Janson et al., 2008; Moran, 2007). The pat-
terns and processes relevant to the distribution and
transmission of these microbes are increasingly recog-
nized as an essential component of their hosts’ biology.

For members of the microbiota thought to form open
symbioses, represented by Weissella and likely Rick-
ettsiella clades, we are only starting to unravel their dis-
tributions, the spectra of their functional diversity,
details of their associations with host organisms, and
ecological and evolutionary significance. With highly
fragmented and biased data, we are far from under-
standing any of these processes in non-model organ-
isms, including millions of insect species that have not
yet been formally described (Adis, 1990; Stork, 2018),
and which are increasingly threatened by extinction as
climate change and other anthropogenic disturbances
intensify (Raven & Wagner, 2021). Adding to the chal-
lenge, microbes identified in a wild-collected insect indi-
vidual may not necessarily form stable associations,
instead originating from food or other environmental
sources. Such transient microbes may form a signifi-
cant portion of the microbial community profile in some
host species (Hammer et al., 2019). Then, a single
observation of a host-microbe combination should not
be regarded as proof of stable association. However,
multiple such observations indicate, at the very least,
that abundant opportunities exist for interaction among
organisms and the establishment of such symbiosis.
Hence, our data suggest that army ant colonies serve
as convenient arenas for the interspecific exchange of
various microbes. It is likely that such microbial
exchange is common in other environments, for exam-
ple, where animals share food resources (Stahlhut
et al.,, 2010) or in predator—prey interactions (Clec’h
et al., 2013; Kennedy et al., 2020). To fully understand
the processes and patterns related to microbial trans-
mission across species, their dynamics and signifi-
cance, it is clear that future broad surveys of microbiota
across diverse wild insect communities will need to
include a comprehensive analysis of their ecology and
interactions with other organisms.
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