706 research outputs found
The lithospheric mantle and lower crust-mantle relationships under Scotland: a xenolithic perspective
In the British Isles the majority of volcanic rocks containing upper mantle and lower crustal xenoliths occur in Scotland. Most of the occurrences are of Carboniferous–Permian age. This paper presents new data on the mineral chemistry of spinel lherzolite xenoliths from the five principal Scottish tectonic terranes. Compositional variations among the minerals emphasize the broad lateral heterogeneity of the subcontinental lithospheric mantle across the region. The remarkable range of Al2O3 v. CaO exhibited by the clinopyroxenes compared with data from other ‘xenolith provinces' emphasizes the extremely complex tectonomagmatic history of the Scottish lithosphere. The generalized age increase from southern and central Scotland to the Northern Highland and Hebridean terranes of the north and NW, with concomitant complexity of geological history, is reflected also by trace element and isotopic studies. Reaction relationships in lherzolites from the Hebridean Terrane, owing to pervasive metasomatism, involve secondary growth of sodic feldspar. This, and light REE enrichment of clinopyroxenes, points to involvement of a natro-carbonatitic melt. Most pyroxenitic xenoliths are inferred to form a basal crustal layer with a generally sharp discontinuity above the underlying (dominantly lherzolitic) mantle. A second discontinuity is inferred to separate these ultramafic cumulates from overlying, broadly cognate metagabbroic cumulates
Strong seasonal differences of bacterial polysaccharide utilization in the North Sea over an annual cycle
Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton-derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes - extracellular hydrolysis and selfish uptake - have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well-known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved
Space Charge Limited 2-d Electron Flow between Two Flat Electrodes in a Strong Magnetic Field
An approximate analytic solution is constructed for the 2-d space charge
limited emission by a cathode surrounded by non emitting conducting ledges of
width Lambda. An essentially exact solution (via conformal mapping) of the
electrostatic problem in vacuum is matched to the solution of a linearized
problem in the space charge region whose boundaries are sharp due to the
presence of a strong magnetic field. The current density growth in a narrow
interval near the edges of the cathode depends strongly on Lambda. We obtain an
empirical formula for the total current as a function of Lambda which extends
to more general cathode geometries.Comment: 4 pages, LaTex, e-mail addresses: [email protected],
[email protected]
- …